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About the Cover
A strange-looking cat welcomes you to the rich world of quantum research. Its sphere-
like eyes represent the qubit, the quantum version of a classical bit. They point “up” and
“down” in a quantum superposition, reminding us of Schrödinger’s famous “cat para-
dox.” A cat is trapped in a steel chamber with a “diabolical device”—a flask of cyanic

acid attached to a Geiger counter
containing a tiny bit of very
long-lived radioactive material.
The decay of one atom will
cause the contraption to shatter
the flask and poison the cat.
What is the quantum mechanical
wave function of this system
before we look inside? 
It is a strange superposition in
which the cat is dead and alive 
at the same time! Clearly,
Schrödinger warns us not to
ascribe too much reality to the
wave function. 

But perspectives change. Almost
seven decades later, scientists 
are manipulating quantum
superpositions in ways that make
them seem almost tangible. In
computation and communication,
single qubits and multiple qubits
are presenting new opportunities.

One example is Peter Shor’s famous quantum factoring algorithm. The beginning of the
relevant quantum computing network is shown at the lower left. Another example is
quantum cryptography, the new wave for communicating secret keys and a remarkable
departure from the stone cipher wheel of long ago seen in the background. 

At upper right is John Wheeler’s drawing of the universe, a giant U, with the observer, 
a big eye, looking backward in time. The thin upper right end of the U represents the
Big Bang, when it all started. Moving down, along the thin right leg, and up, along the
thick left leg of the U, symbolically traces the evolution of the universe—from small 
to large. It is by observing single photons from the distant past that the early universe
becomes part of our reality. In Wheeler’s view, our reality ultimately derives from 
measurement of individual quanta—“it from bit.”

(The drawing of the abacist at bottom right is used with permission from Cliché Bibliothèque Nationale de France, Paris.
Permission for use of the confederate cypher wheel is from the Louis Kruh Collection.)

For past Los Alamos Science issues, 
see our Web site at the following URL:
http://www.lanl.gov/external/science/lascience/index.html
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Planck’s discovery of the quantum in 1900 drove a crack in the armor that still
covers the deep and secret principle of existence. In the exploitation of that 
opening we are at the beginning, not the end. 
—1982 

Nothing [in quantum theory]… was more startling than Heisenberg’s uncertainty
principle, which denied the possibility of simultaneously measuring certain 
properties of motion. The uncertainty principle introduced us to quantum 
fluctuations, revealing empty space to be in fact a cauldron of activity.

If the world “out there” is writhing like a barrel of eels, why do we detect a 
barrel of concrete when we look? To put the question differently, where is the
boundary between the random uncertainty of the quantum world, where particles
spring into and out of existence, and the orderly certainty of the classical world,
where we live, see, and measure? This question…is as deep as any in modern
physics. It drove the years-long debate between Bohr and Einstein. . . . Every
physical quantity derives its ultimate significance from bits, binary yes-or-no 
indications, a conclusion which we epitomize in the phrase, it from bit.
—1998 

John Wheeler 
On quantum theory and information 

Paul Ehrenfest’s photograph of Bohr and
Einstein (shown at left) is courtesy of the
AIP Emilio Segré Visual Archives. 

John Wheeler’s portrait is courtesy 
of Princeton University Library 
(The Historic Photograph Collection, 
University Archives, Department of Rare
Books and Special Collections).
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If we do not
wish to admit
that the 
Second Law
has been 
violated, we
must conclude
that the inter-
vention which
establishes 
the coupling
between [the
measuring in-
strument and the thermodynamic
system] must be accompanied by a 
production of entropy. 
—Leo Szilard, 1929, On the Decrease of Entropy 
in a Thermodynamic System by the Intervention of
Intelligent Beings, Zeit. Phys. 53: 840. 

It is wrong to think of that past [ascribed to a quantum phenomenon] 
as “already existing” in all detail. The past is theory. The past has no existence
except as it is recorded in the present. By deciding what questions our quantum
registering equipment shall put in the present we have an undeniable choice in
what we have the right to say about the past.
—1980 

I have been led to think of analogies between the way a computer works 
and the way the universe works.The computer is built on yes-no logic. So, 
perhaps, is the universe. Did an electron pass through slit A or did it not? 
Did it cause counter B to click or counter C to click? These are the iron posts 
of observation.Yet one enormous difference separates the computer and the 
universe—chance. In principle, the output of a computer is precisely determined 
by the input. Chance plays no role. In the universe, by contrast, chance plays 
a dominant role. The laws of physics tell us only what may happen. Actual 
measurement tells us what is happening (or what did happen). Despite this 
difference, it is not unreasonable to imagine that information sits at the core 
of physics, just as it sits at the core of a computer.
—1998 

Wheeler, J. A. 1980. Beyond the Black Hole.In Some Strangeness in Proportion. 
Edited by H. Wolf. Reading, MA: Addison-Wesley.

———. 1982. The Computer and the Universe. Int. J. Theor. Phys. 21 (6/7).
Wheeler, J. A, and K. Ford. 1998. It from Bit. In Geons, Black Holes & Quantum Foam. 

New York: W. W. Norton & Company, Inc. 

Computing is normally done by [a person]
writing symbols on paper. . . . I assume
that the calculation 
is carried out
on one-dimen-
sional paper,
i.e., on a tape
divided into
squares. I shall
also suppose
that the number
of symbols . . .
is finite . . . The
behaviour of 
the computer at
any moment is
determined by the symbols which he is
observing, and his ‘state of mind.’  . . .
We may suppose . . . the number of
states of mind which need to be taken
into account is finite. . . . the use of more
complicated states of mind can be avoid-
ed by writing more symbols on the tape. .
. . Every [simple] operation consists of
some change in the physical system con-
sisting of the computer and his tape. [And
so, Alan Turing begins to describe his au-
tomatic machine that can perform all
possible deterministic algorithms.]
—Alan Turing, 1937, On Computable Numbers 
with an Application to the Entscheidungsproblem,
Proc. Lond. Math. Soc. 2: 42. (Excerpts reprinted 
in Andrew Hodges’ Alan Turing: The Enigma, 
New York: Simon and Schuster, 1983.) 

Two Giants of Classical 
Information Theory

Drawings by John Wheeler surround his portrait. At upper
right, matter (the large stone) tells space-time how to curve,
and space-time tells matter (the pebble) how to move. 
The waves from two slits are shown to interfere (below). 
At lower left is the Eye of the Universe. These drawings
and additional images in the background are from Geons,
Black Holes, and Quantum Foam (see reference above).

The drawing of Alan Turing’s automatic adding machine
(shown below) is from Alan Turing,The Enigma (see refer-
ence at lower right), and his photograph (at right) is
courtesy of the National Portrait Gallery, London.
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Richard Feynman 
On quantum physics and computer simulation

. . . there is plenty of room to make [computers] smaller. . . . nothing that I can see in
the physical laws . . . says the computer elements cannot be made enormously smaller
than they are now. In fact, there may be certain advantages. 
—1959 

Might I say immediately . . . we always have had a great deal of difficulty in under-
standing the world view that quantum mechanics represents. . . . I cannot define the
real problem, therefore I suspect there’s not a real problem, but I’m not sure there’s no
real problem. 

I mentioned . . . the possibility . . . of things being affected not just
by the past, but also by the future, and therefore that our probabili-
ties are in some sense “illusory.” We only have the information
from the past and we try to predict the next step, but in reality it 
depends upon the near future . . .I’m trying to get . . . you people
who think about computer-simulation possibilities to . . . digest . . .
the real answers of quantum mechanics and see if you can’t invent 
a different point of view than the physicists . . . 
. . . the discovery of computers and the thinking about computers
has turned out to be extremely useful in many branches of human
reasoning. For instance, we never really understood how lousy our
understanding of languages was, the theory of grammar and all that
stuff, until we tried to make a computer which would be able to 
understand language . . . I . . . was hoping that the computer-type

thinking would give us some new ideas . . . 
. . . trying to find a computer simulation of physics seems to me to be an 

excellent program to follow out. . . . the real use of it would be with quantum 
mechanics. . . . Nature isn’t classical . . . and if you want to make a simulation of 
Nature, you’d better make it quantum mechanical, and by golly it’s a wonderful 
problem, because it doesn’t look so easy. 
—1981

Feynman, R. 1959. There’s Plenty of Room at the Bottom. Talk given at the annual meeting of the American
Physical Society at Caltech. (Excerpt reprinted with permission from Caltech’s Engineering and Science.)

———. 1981. Simulating Physics with Computers. Keynote address delivered at the MIT Physics of 
Computation Conference. Published in Int. J. Theor. Phys. 21 (6/7), 1982. (Excerpts reprinted with 
permission from the International Journal of Theoretical Physics.)
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. . . although I have done mostly physics, from time to time I pay attention to 
computers. Two years ago Carver Mead . . . discussed with us [that] there ought to 
be physical laws about the limits in computer design. . . . I got interested in the problem
[the amount of heat generated by an operating computer] and worked it all out. It turned
out that Charlie Bennett from IBM had worked it all out five years earlier. . . . if you
have a reversible machine, the minimum energy requirement is essentially zero. . . . you
can have millions and millions of primitive elements doing the calculation, but if the 
answer has only 40 bits then 40 kT is the minimum energy needed. 

. . . An exciting discovery, made mostly by Fredkin, was that you can make a 
computer solely out ot reversible primitive elements. . . . With one primitive element 
[the Fredkin gate] we produce all the effects we need. In addition, the Fredkin gate is 
reversible. . . . . [and therefore] reversible computation is possible. . . . 

The next question was what are the limits in computers due to quantum mechanics? . . .
What I hoped to do was to design a computer in which I knew how every part worked
with everything specified down to the atomic level. In other words I wanted to write
down a Hamiltonian for a system that could make a calculation. Then I could calculate
the various effects of the limits due to quantum mechanics. 

Now, we can, in principle make a computing device in which the numbers are repre-
sented by a row of atoms with each atom in either of the two states. That’s our input.
The Hamiltonian starts “Hamiltonianizing” the wave function. . . . The ones move
around, the zeros move around . .  Finally, along a particular bunch of atoms, ones and
zeros . . . occur that represent the answer.

Nothing could be made smaller . . . Nothing could be more elegant. No losses, no 
uncertainties, no averaging. But can we do it? . . . how can I make the dynamics of
quantum mechanics generate a long sequence of unitary matrices? . . . It has been sug-
gested [by Paul Benioff, we believe] that [each unitary] operation . . . can be
represented as the action of some Hamiltonian for a definite amount of time. . . .
That’s an awful lot of external machinery. . . Let’s get all the atoms into the system. . .
[And so, inspired by the ballistic models of Fredkin and Toffoli, Feynman designed a
model of a quantum computer in which spin waves would travel through the device to
monitor the computational progress. It was the first model after Paul Benioff’s]. 
—1983 

Feynman, R. 1983. Tiny Computers Obeying Quantum Mechanical Laws. Talk delivered at Los Alamos 
National Laboratory. Published in New Directions in Physics: The Los Alamos 40th Anniversary Volume.
1987. Edited by N. Metropolis, D. M. Kerr, and G.-C. Rota. Orlando, FL: Academic Press, Inc. 
(Excerpts reprinted with permission from the publisher.)

On “tiny computers obeying quantum mechanical laws”



We live in a quantum world, in which probabilities, not certainties, govern what we
see at the submicroscopic level. Interpretations of this fact have been the subject of end-
less debate since the formulation of quantum theory in the 1920s. One thing, however, is
new: In the past decade, we have become increasingly familiar with quantum states.
Indeed, at Los Alamos and other laboratories across the globe, individual quanta are
being manipulated in ways only dreamt of before.

Those efforts have recently intensified as scientists are exploiting a newly identified
aspect of the quantum world. It is called quantum information. Its smallest unit is the
qubit, a two-level quantum system that can be measured to reveal a “yes” or “no” answer
to a question. Thus, measurement of a qubit yields one classical bit of information.
Under appropriate conditions, many systems behave as qubits. The polarization states of
a single photon, spin-half nuclei in NMR experiments, and a system composed of two
relatively stable levels of an ion are among the types of qubits explored at Los Alamos. 

Unlike a classical bit, a qubit can be in a pure, yet superposed, state, in which it
occupies both levels simultaneously. When measured, a superposition of the two levels
behaves like a classical “probabilistic bit,” or pbit, yielding random yes or no answers
according to the probability law associated with the particular measurement. The law
has the following generic form: p is the probability of measuring yes, and (1 – p), of
measuring no. Neither the state of a pbit (that is, its probability law), nor the state of the
qubit can be determined from a single measurement. Instead, an infinite sequence of
measurements on independent but identically prepared copies of the system is necessary.
However, when a qubit is prepared in a pure state, it has a property unknown in the clas-
sical world: There will always be one and only one independent property whose meas-
urement will produce a yes answer with certainty, that is, with probability p = 1.
Moreover, if that property is known, the probability laws associated with all possible
measurements on the pure state are also known. In general, the pure states of a quantum
system make up a complex projective Hilbert space, which for a qubit, can be pictured
as points on the surface of a sphere. That is why qubits are often represented as vectors
pointing along directions of a sphere. 

Preface
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In the illustration at right, a young man
holds a qubit in his hands. His perspective
rests on knowledge accumulated over the last
century in quantum physics, information theo-
ry, and computer science, the fields that gave
birth to the concept of quantum information. He
symbolizes the potential of this new resource for
communication and computation, as well as the
curiosity and excitement it has generated among
young men and women. Research on quantum informa-
tion holds the promise of making quantum phenomena
subject to control and manipulation of a new kind. It also
holds the promise of bringing these phenomena into the
classroom, where young people will grow up knowing
the quantum first hand.

Inspiration is derived in many ways. At Los Alamos,
a sense of history and the legacy of the great minds
who were leading participants in the Manhattan
Project are a continuing source. For that reason, this
volume about the Los Alamos effort in quantum
information and quantum science opens with
thought-provoking words from John Wheeler and
Richard Feynman (see pages vi–ix). Both were
Manhattan Project pioneers, and as discussed
below, both have helped launch the field of
quantum information science and renew
interest in the foundations of quantum
theory and measurement. 

Number 27  2002  Los Alamos Science  xi



The Strangeness of the
Quantum World

“The elementary quantum phenome-
non is the strangest thing in this
strange world. It is strange because 
it has no localization in space and
time. It is strange because it has a
pure yes-no character—one bit of
meaning. It is strange because it is
more deeply dyed with an informa-
tion-theoretic flavor than anything 
in all physics.”
—John Archibald Wheeler (1984 )

Wheeler is best known for working
out the theory of nuclear fission with
Niels Bohr in 1939 and for pioneering
black-hole physics in the 1950s and
1960s. He has also spent well over
half a century inspiring his many stu-
dents and associates to think “outside
the box.” Together with Feynman, his
graduate student in the early 1940s,
Wheeler explored his “crazy” idea of
treating particle trajectories going for-
ward and backward in time on an
equal footing. Both that experience
and Dirac’s ideas influenced the cal-
culational shorthand known as
Feynman diagrams and Feynman’s
formulation of quantum electrody-
namics, for which Feynman received
the Nobel Prize. In the 1960s and
1970s, Wheeler continually probed
the connection between physics and
information and opened the way for
his graduate students and younger col-
leagues to help create a new field. 

Quantum theory teaches us that, on
the smallest scales, nature is observed
to be granular. Electromagnetic radia-
tion is absorbed and radiated in dis-
crete units, which we call photons.
The stable energy levels of an atom
are also discrete, and electrons can be
seen to go from one level to the next
by “quantum jumps.” The counterpoint
to this ubiquitous discreteness is a
form of continuity even more chal-
lenging to our everyday experience:
Individual quantum systems can exist

in a superposition of different states,
corresponding, for example, to pho-
tons traveling along different paths in
the famous double-slit experiment.
Through measurement, the photon
state, or wave function, “collapses”
and becomes concentrated at the spot
where it is observed, but repeating the
measurement on another identically
prepared photon typically produces a
different, though equally definite, out-
come. The state of each identically
prepared photon is what determines
the probability of obtaining different
outcomes in many such repetitions and
for many such measurements. To
physicists imbued with the realistic
local worldview of classical physics,

the result is indeed surprising. Like a
wide wavefront that has found its way
through both slits simultaneously, each
photon interferes with itself. Yet, when
measured, as if by magic, each reduces
to a point of light at some random
location on the screen. The familiar
interference pattern, predicted by both
classical electromagnetic theory and
quantum theory, arises when many
photons are looked at together or in
sequence (see the box “The Double-
Slit Experiment” on page 142). The
single photon—spread throughout
space and observed only at a point in
space—challenges our very concept of
position as an attribute of the particle.

Viewed differently, in the delayed-
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Preface

Figure 1. The Delayed-Choice Experiment
(a) At START, an incoming light wave encounters a beam splitter, which splits it into

two beams of equal intensity. Each is reflected by a mirror and the two cross paths at

point C. Detectors located past point C tell by which route an arriving photon has

come. (b) The arrangement is the same as in (a) except that now a beam splitter is

inserted at point C. It brings beams A and B into destructive interference on one

side, so that detector 1 never registers anything, and into constructive interference

on the other, so that every photon entering at START is registered at detector 2 in the

idealized case of perfect mirrors and 100 percent photodetector efficiency. In (a), one

finds out by which route the photon came. In (b), one has evidence that the arriving

photon came by both routes. In the “delayed-choice” version of the experiment, one

decides at the very last picosecond whether to insert the second beam splitter. In

other words, one waits until the photon has done most of its travel before deciding

whether the photon “shall have come by one route or by both routes.” (Diagram adapted

with permission from John Wheeler, “Law without Law,” in Quantum Theory and Measurement,

edited by J. A. Wheeler and W. H. Zurek, Princeton, NJ: Princeton University Press, 1983.)
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choice experiment (Figure 1), the pho-
ton’s behavior challenges our naive
concept of causality. In (a), a photon
hitting a beam splitter will follow path
A or B, arriving at detector 1 or 2,
respectively, with equal probability.
One can deduce that, in this arrange-
ment, the photon has followed a defi-
nite path: If either path is blocked,
the count in the corresponding detec-
tor drops to zero. In (b), the setup is
the same as in (a) except that a beam
splitter is inserted at C, the point
where the two paths cross. Now,
interference causes all photons to
arrive at detector 2 and none at detec-
tor 1. The photon’s ability to traverse
both paths is alone responsible for this
situation: With either path blocked, the
photons reach each detector equally.
We can turn (a) into (b) by inserting a
beam splitter at C, and we can choose
whether to insert it at the very last
moment. In this way, we can control
whether the photon behaves as if it
had taken one path or the other or had
traveled along both paths. Now comes
the contradiction to a local realist’s
view of causality: The beam splitter
can be inserted after the photon is
done traversing the region in question!

These paradoxes led Wheeler to
view our physical reality through the
lens of information theory: “Every
item of the physical world has at 
bottom an immaterial source . . . what
we call reality arises in the last analy-
sis from posing yes-no questions and
the registering of equipment-evoked
responses; . . . in short, all things
physical are information-theoretic 
in origin.”

The link between what quantum
mechanics tells us might happen—
“multiple paths, interference patterns,
spreading clouds of probability”—and
what does indeed happen in the
observable world is provided by the
measurement process and/or the par-
ticipation of the observer. The late
Rolf Landauer of IBM, sometimes
called the conscience of the physics of

information, echoed Wheeler’s view
(1999): “I am suggesting that, con-
trary to our prevailing views, the laws
of physics did not precede the uni-
verse and control it, but are part of it.
Wheeler has stated that the laws of
physics result from quantum measure-
ment on the universe.” These mind-
bending thoughts about the elementary
quantum phenomenon and the funda-
mental role of measurement, or infor-
mation processing, in determining the
laws of physics can be turned around
to ask another profound question,
“how does the nature of physical law
limit our ability to process informa-
tion?” Both questions were the subject
of a seminal meeting in 1981.

Physical Limits on
Computation and the First

Models of a Quantum
Computer

About 60 physicists and computer
scientists gathered at the workshop
“Physics of Computation” sponsored
by the Massachusetts Institute of
Technology (MIT). The organizers
were Rolf Landauer, Tom Toffoli, and
Ed Fredkin. The participants included

Wheeler, Feynman, Charles Bennett,
and Paul Benioff. According to the
organizers, they all shared the belief
that “physics and computation are
interdependent at a fundamental level.”

A general concern at that time was
the drive toward ever-increasing com-
puter power through miniaturization of
components. Moore’s law—the dou-
bling of transistor density on a chip
every eighteen months—had been
describing an ongoing trend for several
decades (see Figure 2). Because tran-
sistor elements were getting smaller,
more and more of them were being
crammed onto a chip, proportionately
increasing computing power. 

In the foreseeable future, each ele-
ment would shrink to a size at which
quantum effects become important.
The question is how small could each
get? Would the heat generated from
so many computational steps in a
tiny area lead to a literal meltdown of
the chips? Could one use quantum
mechanical elements to build com-
puters—single atoms, perhaps?
Would the time-energy uncertainty
relation dictate the rate of energy dis-
sipation? Would quantum fluctua-
tions get in the way of reliability? 

The research staff at IBM had
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Figure 2. Miniaturization of the Transistor
By 1980, over 100,000 transistors were on a single chip. Today, that number is 

40 million, or 20 million per centimeter squared. Quantum effects will become

important when the size of the transistor approaches the nanometer scale and

only a few electrons are involved in determining current flow.



thought about these questions for
many years and made some important
strides. Landauer, for example, had
repeatedly emphasized that informa-
tion is always physical. He had delved
deeply into the physics of information
processing and in 1961 understood
that erasure, the discarding of infor-
mation, is an irreversible process that
produces heat and increases entropy.
He also assumed that computation
necessarily involves erasure. 

In 1973, Bennett showed that
assumption to be false. Building on
Szilard’s work that connected infor-
mation and entropy and Landauer’s
insight that erasure is the problem,
he developed a logically reversible
model of a Turing machine. This 
formal machine model of a universal
computer had a memory tape, read-
write head, and finite-state internal
machine in the style of a Turing
machine (see the box “The Universal
Turing Machine” on page xvi).
Bennett managed to design a
reversible one-to-one mapping of
information from input to output by
employing three tapes instead of one:
The first tape was for the input data;
the second, for a history of interme-
diate results; and the third, for keep-
ing a copy of the output. Because all
operations would be done reversibly,
the machine could run backwards,
thereby retracing its steps, disposing
of the intermediate results along the
way, and returning to its initial state.
This logical reversibility implied
that, in principle, one could construct
a thermodynamically reversible 
physical machine, which if run slowly,
could perform any computation
reversibly with arbitrarily little energy
dissipation per step. Thereby, Bennett
had found a way around the heat
problem, but at the expense of speed.
What, if any, were the limits 
quantum mechanics would place on
computation?

It was Benioff who first showed
that reversible computation with no

dissipation could be realized very
naturally in a computer made of
quantum mechanical parts. In 1980,
he had begun developing quantum
mechanical models of computation as
a first step toward a model of intelli-
gent systems. This very first model of
a quantum computer consisted of a
lattice of spin-half atoms that would
evolve smoothly and deterministically
according to the Schrödinger equa-
tion of quantum mechanics. Benioff
invented an appropriate spin
Hamiltonian that would govern the
dynamics of this spin system, he pro-
posed that the Hamiltonian act for a
specific period to accomplish speci-

fied operations, and he showed that
the states of the system would evolve
with time, as needed to carry out the
basic logic operations of a Turing
machine. Because quantum mechani-
cal time evolution is unitary, it gener-
ates a one-to-one reversible mapping
of the system from one state to the
next that can implement computational
steps with no dissipation. Benioff pre-
sented his model at the 1981 “Physics
of Computation” workshop. His ideas
were revolutionary at the time. Many
scientists had believed that any fast

switching event would, by the time-
energy form of the Heisenberg 
uncertainty principle, require a mini-
mal energy expenditure, and therefore 
they expected to find intrinsic 
limits to the speed and accuracy in 
a computer obeying the laws of 
quantum mechanics.

Benioff showed that this fear was
unfounded: The laws of physics place
no upper bound on the speed attain-
able or lower bound on energy dissi-
pation during computation. The true
significance of the uncertainty princi-
ple is, however, that the speed would
be limited by the particular quantum
dynamics of the computer: That is,
the time per operation is limited by
the Hamiltonian (energy) in the sys-
tem divided by h. Furthermore, the
size of the elements could be reduced
to individual atoms, or as we will see
below, individual photons. Of course,
although Hamiltonian evolution was
simple to describe theoretically,
Benioff had not dealt with the practi-
cal issues such as creating the initial
state of the system, reading out the
answer, the probabilistic nature of the
quantum mechanical answer, and
keeping the system isolated from the
environment.

In “Zig-Zag Path to Understanding,”
Landauer recalls Benioff’s 1981 pres-
entation and the reaction to it: “[My
own] attempts to produce a quantum
version of the reversible Bennett-
Fredkin-Turing machine had gotten
hopelessly bogged down . . . Benioff
saw the way to do that. You invoke a
Hamiltonian (or a unitary time evolu-
tion) that causes the information-bear-
ing degrees of freedom to interact, and
to evolve with time, as they do in a
computer. You introduce no other parts
or degrees of freedom. . . . Feynman
was present at the 1981 workshop at
MIT, where many of us discussed
Benioff’s notions. . . . Did we under-
stand Benioff? Feynman did not 
need much of a clue, and as a result
generated his own very appealing and
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“Information is inevitably tied to a
physical representation and, there-
fore, to all the possibilities and
restrictions allowed by our real 
physical universe. . . This is the 
viewpoint invoked by [Leo] Szilard.
… His understanding of the physical
nature of information was truly 
pioneering.”
—Rolf Landauer (1999 )



effective view of quantum mechanical
computation” (Landauer 1994). 

The keynote address at the 1981
workshop was delivered by Feynman,
and it too was to have a profound
impact on the community. The topic,
tangential to the rest, was the problem
of simulating physics with
computers in particular, simulating
quantum physics. Feynman told his
audience that this topic had a twofold
interest: “learning something about
the possibilities of computers, and
also something about possibilities in
physics.” This interest was fueled by
his close association with Fredkin, a
proponent of the idea that space and
time are discrete, not continuous, and
that the Universe is, in essence, a
giant digital computer.

Feynman analyzed the problem
with his typical flare and brilliance.
He limited the computer to one with

local interconnections and the type of
simulation to one in which the num-
ber of computer elements required to
simulate a large physical system is
proportional to the space-time volume
of the physical system. “. . . [C]lassi-
cal physics is local, causal, and
reversible, and therefore apparently
quite adaptable to computer simula-
tion,” provided, Feynman said, that
we allow space-time to be discrete. 
In quantum mechanics, however,
“we know immediately that we get
only the ability, apparently, to predict 
probabilities . . .”

Could a system of probabilistic
universal computers, classical Turing
machines supplemented with random
number generators, simulate the prob-
abilistic world of quantum mechanics?
His answer was a resounding “NO!” A
probabilistic computer could not
reproduce events with the same proba-

bilities observed for quantum mechan-
ical systems, without, in essence,
simulating the entire universe at each
point. A computer with only local
interactions and polynomial resources
would have to solve the famous hid-
den variable problem to match quan-
tum probabilities, but John Bell had
shown that only a nonlocal theory
could predict the same probabilities 
as quantum mechanics (see the box
“The EPR Paradox and Bell’s
Inequalities” on page xviii).

Feynman also concluded that such
a classical computer could not simu-
late the wave function of a quantum
system of N particles because the
number of variables needed to
describe the problem would grow
faster than exponentially with N. He
suggested, however, that “You can
simulate it with quantum computer
elements. It’s not a Turing machine but
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“During the 1960s and 1970s, there was much inter-
est in making fast, more powerful computers by minia-
turizing components and packing more computer power

into smaller volumes of space
and time. However, there were
two main problems: One was the
appearance of quantum mechani-
cal effects and the other was the
generation of heat due to the 
irreversibility of the computation
process. Until the work of
Bennett in 1973, it was thought
that the computation process was

necessarily irreversible, with energy dissipation associ-
ated with information erasure. However Bennett
showed that to every irreversible computation there
exists an equivalent reversible computation.”

“Yet Bennett’s work did not address concerns related
to quantum effects. Here, the concerns were twofold.
One was that the energy-time uncertainty principle
meant that the amount of energy dissipated per compu-
tation step was bounded below by Planck’s constant
divided by the switching time. However, as Landauer

pointed out in 1982, the uncertainty principle does not
mean that the energy is necessarily dissipated. I used
this fact implicitly in my models. They operated at the
quantum limit in that the total energy of the system was
given by the energy-time uncertainty principle, but that
energy was not dissipated.”

“The other concern was that computation steps of a
conditional nature—if a system is in state 0, do this; if
it is in state 1, do that—necessarily involved measure-
ment, which of course, does dissipate energy. The view
that reading is equivalent to measurement is again erro-
neous. It ignores the fact that measurement consists of
two stages: first establishing a correlation between
states of the measured system and the apparatus, that is,
an entangled state of the system and the measuring
apparatus, and second, amplification or decoherence. It
is this latter stage of decoherence, much studied and
developed by Wojciech Zurek, that leads to dissipation.
However, only the first step is necessary in quantum
mechanical models of computation. This step, which
does not dissipate energy, was used implicitly in my
models and is an essential part of quantum computation
models used today.” (Private communication) 

Quantum Issues at the 1981 Workshop as Remembered by Paul Benioff 



a machine of a different kind.”
Feynman then guessed that “every
finite quantum mechanical system can
be described exactly, imitated exactly,
by supposing that we have another 
system such that at each point in
space-time this system has only two
possible base states. Either that point
is occupied or unoccupied—those are
the two states.” In other words, a uni-
versal quantum simulator, closely
resembling today’s universal quantum
computer, could be used to simulate
discrete quantum systems. That idea is
being pursued today. Only later, after
Benioff’s presentation at the 1981
workshop, did Feynman develop his
own model of a universal quantum
computer. It included a system for
monitoring within the computer the
progress of the calculation so that one
would know the endpoint of the calcu-
lation and the time at which to read

out the answer. At all decision points,
however, this computer was in a defi-
nite state; never was superposition of
different computational histories used
as a tool.

In the spring of 1983, on the 
40th anniversary of the Los Alamos
National Laboratory, Feynman
returned to Los Alamos for the first
time since the 1940s. He joined his
colleagues from the Manhattan Project
era in a seminar on forward directions
in physics. Feynman talked about
reversible computing and his own
model for a quantum computer in a
talk entitled “Tiny Computers Obeying
Quantum Mechanical Laws.”
Feynman’s model was not the first,
and it is not the model used in today’s
theoretical and experimental studies.
Nevertheless, it stands as a record of
Feynman’s immense interest in this
emerging area.

Physical Realizations of
Classical vs Quantum

Computers

One of the marvels of modern life
is that the “universal” computer any
machine that is as powerful as a
Turing machine has become totally
commonplace. All desktop computers
are universal in the sense that, given
enough time and memory, they can do
any computation that is done on any
other computer no matter how large.
The model used to construct modern
computers and the one used in this
volume to describe quantum informa-
tion processing are circuit models. For
a classical computer, this model is
realized as a set of physically distinct
logic gates, usually implemented as
transistor elements, connected by real
wires. Information entered in the input
register is processed as electric 
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In 1935, Alan Turing imagined a machine that
would be capable of answering any question that
could be answered logically. His invention was a
blueprint for the modern programmable computer, and
he proved theoretically that it could perform any com-
putation that could be carried out through logical
manipulations. The Turing machine has three ele-
ments (see figure): (1) an internal machine L that con-
tains the program and can assume any one of a finite
number of states, (2) a computation tape containing
an infinite number of cells that serves as the memory,
and (3) a read-write head that scans the tape, one cell
at a time performs read/write operations on the cells,
and can shift one cell to the left or right, or stay in
place, depending on the contents of the cell, the state
of the internal machine L, and the program instruc-
tion. The read/write alphabet is finite, say, zero and
one, and it also includes a blank and a start symbol.
Although operations such as addition require many
steps, the machine is very powerful. The Church-
Turing thesis states the following: The class of func-
tions computable by a Turing machine corresponds

exactly to the class of functions that we would natu-
rally regard as being computable by any algorithm
(definite procedure). Turing’s invention was built on

the insight of Kurt Gödel that both numbers and oper-
ations on numbers can be treated as symbols in a syn-
tactic sense. Today, we take for granted that all infor-
mation, including programmable instructions, can be
expressed by strings of ones and zeros (or “yes” and
“no” answers) and that all computations, from simple
arithmetic to proving of abstract theorems, can be
accomplished when a small set of mechanical opera-
tions (the program) are applied to these bit strings in
some specified order.

Program

Read/write head
Tape

0   1   1   1   0   1   0   0   1   1   0             . . . . .

Finite
state

control

The Universal Turing Machine



currents that go through a prescribed
set of logic gates whose voltages are
set according to the program instruc-
tions. Results are recorded in an out-
put register. The figure at right shows
two of the standard logic gates: the
not gate and the and gate. Both the
electronic symbols and corresponding
truth tables for those operations in
binary notation—0 = false (no), and 
1 = true (yes)—are shown. These are
the only gates needed to construct a
universal computer that can perform
all possible computations: In fact, a
nand gate, constructed as an and gate
followed by a not gate, suffices. Note,
however, that the and (and nand) gate
is obviously irreversible one cannot
determine the identity of the two
inputs from the single output. A fully
capable computer also needs fanout,
the ability to send the same output 
to multiple inputs, and it needs to 
perform iteration (known as loops 
or recursion).

In the physical realization of
reversible computing achieved with a

quantum computer, on the other hand,
there are no real wires. The input and
output register is the same set of
qubits, a row of, say, spin-half atoms in
an ion trap, in a molecule, or embed-
ded in a solid matrix. The “wires” car-

rying the qubits from one gate to the
next are their time lines, and the logic
gates are a sequence of unitary opera-
tors (typically external radio-frequency
pulses and evolutions due to the inter-
nal interaction Hamiltonian of the 
system) that change the states of the
qubits (see Figure 3). During the com-
putation, the quantum mechanical

wave function for the system evolves
smoothly and deterministically accord-
ing to the Schrödinger equation.

Once the computation is complete,
the answer is obtained by a measure-
ment, and, hence, is often probabilis-
tic. A reliable answer typically
requires repeated computations. It is,
however, possible to design efficient
quantum algorithms so that the final
answer in the qubits is close to deter-
ministic—any one measurement has
sufficient information to allow extract-
ing the desired answer with high
probability. This deterministic feature
is illustrated for the parity problem
(introduced on page 21 of the primer)
and Shor’s algorithm (see the article
“From Factoring to Phase Estimation”
on page 38). The length of time for a
quantum computation is limited by
the intrinsic relaxation time of the
system (various internal interactions
can drive the two-level qubits to the
ground state) and the decoherence
time—the gradual “leakage” of quan-
tum coherence to the environment.

The Unique Properties of
Quantum Information

Feynman’s notion that any finite
quantum system could be simulated
by a device made of spin-half atoms
expanded the scope of what one might
do with a computer made of quantum
mechanical elements. In 1985,
Deutsch took this idea one step fur-
ther, suggesting that a computer made
of elements obeying quantum
mechanical laws could efficiently per-
form certain problem-solving and
computational tasks for which no effi-
cient classical solution was known.
The key features of quantum mechan-
ics to be exploited were the principle
of linearity, which allows the compo-
nents of a superposition of multipar-
ticle states to evolve simultaneously,
and the principle of interference,
which allows certain superpositions
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In quantum computers, the cnot (controlled not) gate plays a role analogous to that

of the nand gate in classical computers. Part (a) shows the NMR quantum circuit,

the sequence from left to right of 1-qubit rotations and 2-qubit internal Hamiltonian

evolution, that executes the logic of the cnot gate, namely, reverse the spin of qubit

2 only if qubit 1 is in the 1 state (see Truth Table). Part (b) shows the rf pulse

sequence needed to execute the cnot gate. Note that the two-qubit operation occurs

by allowing the internal spin-spin Hamiltonian to evolve the system for a specified

period. (See the article “NMR and Quantum Information Processing” on page 227.)
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When quantum theory was first
formulated, Albert Einstein, Nathan
Rosen, and Boris Podolsky questioned
its completeness. They described a sit-
uation in which a predictable outcome
could not be predicted by quantum
mechanics. David Bohm illustrated
this paradox (called EPR) using a
molecule of two spin-half atoms with
total angular momentum zero, that is,
a coherent superposition of two prod-
uct states (atom 1 in spin up) ×
(atom 2 in spin down) and (atom 2 in
spin up) × (atom 1 in spin
down) see Figure A. For this maxi-
mally entangled state (defined in the

main text), quantum mechanics pre-
dicts only that, if one atom’s spin 
is measured along an axis chosen 
arbitrarily, the other atom’s spin will
always turn out to be its opposite
when measured along the same axis.
Quantum mechanics also requires,
however, that each individual meas-
urement have a random result. One
concludes that, if the atoms are split
apart and the spin of atom 1 is meas-
ured after the two are separated by a
large distance, a measurement of the
spin of the second atom along that
same axis would be completely deter-
mined without any signalling from
atom 1.

In the worldview of a local realist,
a complete theory is one in which
every ‘real’ property of a system can
be predicted. Further, if the outcome
of a measurement can be predicted
with certainty without interfering with

the system, then the measurement
result defines a ‘real’ property.
Because the spin direction of atom 2
can be predicted with certainty, spin
direction must be a ‘real’ property of
the atom. Hence, if quantum theory
were complete, it would predict the
spin direction of each atom independ-
ently. In other words, “since the initial
quantum mechanical wave function
does not determine the result of an
individual measurement, this predeter-
mination (of the spin direction of
atom 2) implies the possibility of a
more complete specification of the
state” (Bell 1964). To a local realist,

therefore, the property of nonlocal cor-
relation seen in David Bohm’s example
required introduction of a more com-
plete theory, possibly involving “hid-
den variables” (or degrees of freedom
over which one would have no control)
that would determine the outcomes of
individual measurements. This appar-
ent incompleteness of quantum theory
was one issue in the famous debate
between Bohr and Einstein about the
validity of quantum mechanics. 

Any hope of a more complete the-
ory was laid to rest when John Bell
(1964) showed that no local realistic
theory could possibly reproduce the
probabilities computed according to
quantum mechanics, without at some
point invoking nonlocal effects.
Figure B illustrates the basis of Bell’s
proof. In that figure, we construct a
local realistic theory that matches the
results depicted in Figure A. We

imagine that the initial quantum state
can be mimicked classically by two
arrows pointing to random, but oppo-
site, points on a sphere. When the sys-
tem splits apart, each arrow has an
equal probability of going to the right
or left. With the simple local rules
given in parts (i) and (ii) of Figure B,
a classical theory can predict the 
perfect correlations seen when both
spins are measured along the same
axis—the spins point in opposite
directions with probability 1. Only
when one measures the two arrows
(spins) in different directions, say, z
and d, does the local realistic theory
contradict the quantum results see
Figure B(iii). Clearly, classical ana-
logues of entangled qubits need to be
more complicated than a pair of
arrows; as long as the results of meas-
urements along all axes depend on a
single variable, such as the arrow’s
direction in our example, the quantum
mechanical results cannot be repro-
duced. Basically, qubits would need 
to be modeled by machines that calcu-
late the results of measurements along
different axes using different combi-
nations of hidden variables, all of
which may be random but must be
correlated between the two measure-
ment paths. This possibility was ruled
out by Bell, who showed that the
entire set of correlations implied in
Figure B cannot be reproduced by any
local realistic theory. 

In every such classical system,
one can ask for the probability 
p(z+, d+, d+) that the hidden variables
of the first particle have such values
that measuring its spin along the three
fixed axes z, d, and d (see next page)
would yield positive values. Because
measurements along the d axis can
provide only two possible values, pos-
itive or negative one concludes that
p(z+, d+) = 

p(z+, d+, d+) + p(z+, d+, d–).
On the other hand, one obviously has
p(z+, d+, d+) ≤ p(d+, d+) and
p(z+, d+, d–) ≤ p(z+, d–). 

? ?
B

A

When A measures +1 for the spin of atom 1 along the x-axis,  
A can predict with certainty that B will measure –1  

for the spin of atom 2 along that same axis even though A and B do not communicate.

|+1x〉

Singlet state of two atoms: Total spin = 0   = 1/√2 (|+1z〉
1
|–1z〉

2
 – |–1z〉

1
|+1z〉

2

1 2

 

The EPR Paradox and Bell’s Inequalities

Figure A. Is Quantum Mechanics Complete?
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Putting these together, one obtains
the master result that the distribution
of hidden variables must satisfy

p(z+, d+) ≤ p(z+, d–) + p(d+, d+)  .

Let us now consider an event in
which the first spin is measured to be
positive along the z-axis, and the sec-
ond is observed to be negative along
the d-axis. Because of the strict
antiparallelism of the two spins when-
ever both are measured along d, we
can conclude that, if the first spin had
been measured along the d-axis, the
measurement would have yielded a
positive result. Thus, such events for
spins 1 and 2 occur when, and only
when, the hidden variable of the first
spin is in such a state that it would
provide positive results to measure-
ments on both the z- and d-axis. In
our notation, such a state for spin 1
happens with probability p(z+, d+).

Thus, the probability of measuring a
positive first spin along z and a nega-
tive second spin along d, Pzd(+, –), is

equal to p(z+, d+). Using similar
logic, we can transform our master
inequality above to a statement about
correlations:

Pzd(+, –) ≤ Pzd (+, +) + Pdd(+, –)  ,

where Pzd(+, –) represents the proba-

bility that, in an experiment in which
the first spin was measured along z
and the second along d, the observed
outcomes were positive and negative
respectively. This is a particular case
of Bell’s inequality, which every clas-
sical theory model must satisfy.

On the other hand, consider meas-
uring the entangled system of two
spin-half atoms along the same axes z,
d, and d. One can easily obtain the
probabilities from quantum mechanics:

Pzd(+, –) = 3/8, Pzd(+, +) = 1/8, and

Pdd(+, –) = 1/8, and the inequality is

clearly violated by the quantum sys-
tem. Our classical reasoning led us
astray: An entangled state is an indi-
visible unit, and trying to describe it
probabilistically out of local proper-
ties assigned to its subsystems, even if
they are correlated, is forever doomed
to failure. 

Bell’s result changed forever our
understanding of quantum mechanics
and led to the modern view of quan-
tum measurement.

The following are assumptions for this thought experiment: (1) Spins in the initial state  
are assumed to point along opposite directions. (2) The spins fly off in opposite directions.  
(3) Each spin is equally likely to go to the left or right. 

i. Measure both spins along the z-axis. To match quantum correlations, assume that the 
probability to measure a positive spin p(z+) or a negative spin p(z–) is 1/2. Both quantum  
and classical systems yield perfect correlations. The probability of spins pointing in opposite 
directions is 1.

ii. Measure both spins along the d-axis. To match quantum correlations, add the deterministic  
rule that + along z is measured as + along d and that – along z is measured as – along d. Again, 
quantum and classical theory predict spins point in opposite directions with probability 1.

iii. Measure the spin traveling to the left along the z-axis and the one traveling to the right  
along the d-axis. Quantum and classical correlations do not match!
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Figure B. Can a Local Realistic Theory Predict Quantum Mechanical Probabilities?
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to be detected with high efficiency. 
To illustrate these ideas, first 

consider the properties of a single
spin-half system, say, a single particle
carrying the smallest nonzero amount
of spin allowed by quantum mechan-
ics. The particle behaves as a qubit:
Measuring its spin (the amount of its
intrinsic angular momentum) along
any axis yields one of two quantized
values, +h/2 or –h/2, and as mentioned
early on, repeated measurements on
independent, identically prepared sys-
tems yield a probability law for the
two results (that is, the state of a pbit).
The system, can, however, be prepared
in a pure state with the spin pointing
along a definite direction, so that
measurement of the spin component
along that direction results in +h/2
with probability 1. 

Suppose also that the system then
evolves in isolation. By that we mean
that laser pulses and other external
sources can cause the spin to change
direction in accordance with the laws
of quantum mechanics, but because
those sources have very large quantum
uncertainties, the interaction with the
qubit causes almost no change in their
states. To put it differently, evolving in
isolation means that the qubit can
change state through interaction with
the external world, but the external
world has no information about the
spin state of the qubit. Under these
conditions, the pure state stays pure:
Its spin always points in some definite
direction (which, of course, changes
with time), and if one happens to
measure the spin along that direction
or its opposite, one would be guaran-
teed to obtain a definite result and not
disturb the state. Moreover, if one
knew the preparation procedure and
evolution that led to the state at the
time of measurement, one could pre-
dict, in one stroke, both its direction
and the probabilities for the measure-
ment results along any direction. 

For a register of N such qubits, the
number of orthogonal pure states, or

states in a complete basis, is exponen-
tially large, 2N to be precise. Just like
a single qubit, however, this N-qubit
quantum system can be in any super-
position of these exponentially large
number of basis states. Furthermore,
the linearity of quantum mechanics
implies that a sequence of few-qubit
unitary operations designed to per-
form a given computation will do so
on any superposition as easily as on a
particular one. In this way, it effec-
tively performs an exponentially large
number of calculations simultaneously,
without needing exponential resources
at any stage.

When Deutsch conjectured (1985)
that these simultaneous calculations
could be exploited to solve problems
more efficiently than could be done
on a classical computer, he was quick
to point out that this “quantum paral-
lelism” is not an analogue of classical
parallel computations. In fact, any
such computation followed by meas-
urement can yield only one N-bit
answer. A direct measurement similar
to that in case (a) of Figure 1 would
collapse the final state to the results of
a single randomly chosen calculation,
a calculation that could have been 
performed on a classical computer
equally easily. In contrast, quantum
algorithms are carefully designed to be
like case (b) of Figure 1; that is, inter-
ferences between the results of a large
number of simultaneous evaluations
are arranged so as to produce definite
outcomes. Those outcomes provide
information about global patterns
(such as the periodicity of a function). 

At first glance, this extra ability of
quantum computers seems surprising.
After all, if the initial superposition of
the 2N basis states is a collection of N
pure qubits, each of which can be rep-
resented as an arrow pointing in some
direction, and the computational steps
maintain the purity of these individual
qubits, then those steps could be
viewed as rules for turning the arrows
around. Such rules, it is easily shown,

can be implemented on a classical
computer with no difference in effi-
ciency or precision. And if this were
all there was to quantum computers,
they could be no more powerful than 
classical ones. 

Here, however, is the interesting
part: Although quantum computations
require only two-qubit operations at
each step, many steps together are
effectively multiqubit operations.
Hence, the individual qubits do not
evolve in isolation. Under these condi-
tions, quantum mechanics assures us
that only the entire N-qubit register is
in a pure state, not the individual
qubits; and this is where the miracu-
lous nature of quantum correlations
comes in. Many of the pure states of
this N-qubit system display a peculiar
phenomenon called entanglement:
Even though the state of the register is
pure—that is, we know as much as
the uncertainty principle allows us to
know about the system—and the
entire system can be conveniently 
represented as a classical arrow, the
states of the constituent qubits are not
pure. And so, the state of the whole
system is not describable by specify-
ing the state of each qubit separately.
An entangled state of more than one
qubit is one that cannot be described
as a probabilistic mixture of the prod-
uct of single qubit states; a two-qubit
state is called maximally entangled
when it is pure, yet provides no infor-
mation about local measurements on
individual constituent qubits. An
example of a maximally entangled
state is provided in the box “The EPR
Paradox and Bell’s Inequalities” on
page xviii. Entangled states are more
akin to a classical register of proba-
bilistic subsystems in which the inter-
esting information (that is, the results
of the calculation so far) is encoded in
the numerous correlations between the
subsystems. An analogous classical sys-
tem, without the benefit of the multipar-
ticle superpositions, would have to sepa-
rately keep track of these correlations,
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which build up exponentially fast as the
calculation proceeds. Whereas a quan-
tum operation that changes the states of
only a few qubits automatically updates
the entire multiparticle superposition,
the corresponding computational step
in the classical system would require
updating all these correlations and
would become exponentially expen-
sive. Note that it is not the entangled
states per se that make quantum com-
putation more efficient than classical
analogues. Instead, enhanced computa-
tional power is a common feature of
general quantum evolutions. Only a
computation involving a very limited
set of operations has the possibility to
be mimicked classically. Conversely,
unentangled evolutions of pure states
can be mimicked classically because
they, of necessity, involve very few
kinds of operations. It is an open 
question whether the larger, but still
limited, space of quantum evolutions
that do not entangle mixed states 
of large number of qubits can be simu-
lated efficiently classically, or whether
they are powerful enough to perform
scalable, useful computations. 

Two specific features are responsi-
ble for the power of quantum computa-
tion: Because quantum mechanics
causes multiparticle superpositions to
evolve linearly, each computational
step can carry out operations that
would need an exponential number of
classical resources. At the same time,
the interference principle allows 
readout of certain global properties of
the results. Those properties are often
algorithmically unobtainable without
evaluating the computation on each of
the exponentially large number of input
states. Deutsch’s original quantum
algorithm gave a solution for one such
global property. 

The area in which quantum entan-
glement does serve as a key resource
is communication. The idea of exploit-
ing the properties of quantum states for
communication was born in the late
sixties, when Stephen Weisner invented

a quantum scheme for preventing
counterfeiting of paper currency. His
scheme was based on two properties of
single quanta in pure states: First,
though the results of measurements on
quantum systems generally give ran-
dom answers, a pure quantum system
always provides a definite answer to
some question. As a result, a quantum
system is “unreadable” (in the sense of
providing a definite result of measure-
ment on it) to someone unaware of
this question. Second, because a single
quantum cannot be cloned (the no-
cloning theorem), the system cannot
be copied without having been read.
Weisner’s idea was to create serial
numbers for paper currency by embed-
ding in each bill a series of single-
photon traps and filling them with a
series of linearly polarized photons,
each polarization standing for a 
particular number. If the series were
composed of “nonorthogonal” (that is,
prepared to answer different questions
precisely) polarized photons, say,
linearly polarized in both the horizon-
tal/vertical directions and in the diago-
nal directions, then only the banks,
which knew the precise directions to
check, would be able to verify the
number on the currency. Not having
that specialized knowledge, counter-
feiters would be unable to read or
duplicate it without error. In fact,
because measurement collapses the
state to the observed result, any 
counterfeiter’s attempt at reading 
the numbers could be detected by the
bank with some probability.

Weisner’s idea was ingenious
though completely impractical. Yet, in
the hands of Weisner’s old college
friend Bennett and Bennett’s collabo-
rator Gilles Brassard, it was trans-
formed into a method for two parties
to establish a secret encryption key
while not allowing an eavesdropper to
go undetected. One party creates a
sequence of nonorthogonal photons,
each polarized randomly either along
the horizontal/vertical direction or

along the diagonals, and sends them,
one at a time, to the other party. The
receiver can then measure each pho-
ton, randomly choosing one of the
two bases. Because the sender can
predict the measurement result only if
the receiver and sender use the same
basis, after the measurement the two
need to communicate which basis
each had used and discard the cases
with different bases. Even if eaves-
droppers listen to the conversation on
a public channel and have access to
the photon as it is being transferred,
they can neither copy (clone) the pho-
ton (so as to store and measure it
when its basis is finally announced)
nor measure it in a random basis 
during transmission without affecting
its polarization if they choose the
wrong basis. The original parties
always check the statistics of a small
sample of the shared key to see if 
some process, or an eavesdropper, has
affected the photons in flight and then
use methods to insure, with high proba-
bility, the privacy of the shared key.

The central fact that single quantum
systems in an unknown state cannot be
cloned, or copied exactly, was proven
by Bill Wootters and Wojciech Zurek,
in 1982. Their elegant proof uses only
the fact that quantum mechanics is a
linear theory, in particular, that the
principle of superposition always
holds (see the box “The No-Cloning
Theorem” on page 79). (Dennis Dieks
proved the theorem independently that
same year.)

Between 1985 and 1994, many
people contributed to defining the spe-
cific elements of a universal quantum
computer, to exploring categories of
algorithms that might work more effi-
ciently on a quantum computer, to
developing applications of quantum
information to communication, and in
general, to developing the theory of
quantum information in a way that
paralleled the theory of classical
information. But the interest was
mainly confined to a relatively small
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group within the research community.
Then, without warning, the field

broke wide open. Peter Shor demon-
strated that finding the prime factors
of an integer, a problem with great
practical import, could be solved effi-
ciently on a quantum computer. His
solution took advantage of the mathe-
matical fact that the remainders
obtained when successive integral
powers of any number x were divided
by a fixed number N followed a cyclic
pattern, and the corresponding period
r was directly related to a factor of N.
Shor’s algorithm arranges an interfer-
ence between the evaluations of a
large sequence of these remainders so
as to determine the period of the cycle
with small error probability. 

It is hard to overestimate how
important Shor’s work was for con-
verting quantum computing and quan-
tum information from an esoteric field
involving only a few specialists to a
field of general interest and real fund-
ing. One of the central problems in
cryptography involves sending an
encryption key when no private chan-
nel is available. Apart from the quan-
tum key-distribution techniques
described earlier, the best available
methods in use today rely on the diffi-
culty of factoring products of very
large primes. To decrypt information,
one has to find a solution to the so-
called “discrete logarithm problem,”
whose practical solution calls for
knowing the prime factors of an enor-
mous number (see the box “Public-
Key Cryptography: RSA” on page
72). Shor’s proof that quantum com-
puters could factor large numbers effi-
ciently means that, if a quantum com-
puter of sufficient power could be
built, it would put at risk all such
cryptographic methods. And these
methods have been widely used to
secure banking transactions,
exchanges between intelligence agen-
cies, and transactions over the
Internet. Given the importance of his
work, Shor was awarded the

Nevalinna Prize for mathematical
aspects of information science.

Both building a quantum computer
and developing new cryptographic 
protocols such as quantum key distri-
bution took on the aura of urgency. It
seemed that these projects were not
only interesting but also necessary
from the point of view of security.
Funding became available for mathe-
maticians to find algorithms other than
Shor’s that could take advantage of
quantum information. The most impor-
tant one found to date is Grover’s algo-
rithm for unstructured searches. Many
experimentalists were supported to try
implementing what the mathematicians
and theoretical physicists said could in
principle be done. Ideas for construct-
ing new qubits were cropping up
everywhere. And excitement was gen-
erated in the popular press. But loom-
ing in the background was the certain
knowledge that quantum states are
fragile. Errors would inevitably occur,
for example, through coupling to the
environment. One had to find a way of
preventing these without destroying
the quantum states, which carry the
information. That problem was solved
in principle by Shor and Andrew
Steane. They invented a scheme for
error correction analogous to the
strategies used for classical informa-
tion. In 1998, Manny Knill, Raymond
Laflamme, and Zurek proved the exis-
tence of an error bound, below which
a quantum computation of arbitrary
size could be implemented to arbitrary
accuracy. Independent proofs of 
related results were done by Dorit
Aharonov and Michael Ben-Or,
Alexei Kitaev, and John Preskill.
Implementing quantum computation 
in the laboratory became a realistic
and compelling goal. Thus began a

worldwide effort to build a quantum
computer and to explore all the ways 
in which quantum information could
impact science and technology. 
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In line with six decades of
Laboratory tradition, the breadth of

Los Alamos research in quantum sci-
ence spans the gamut from funda-
mental questions in quantum theory
and measurement to practical applica-
tions of quantum information science.
The Los Alamos program started in
the early 1980s with Wojciech Zurek
and his postdoctoral fellows conduct-
ing a lively investigation into the
emergence of classical reality from
the quantum world. Zurek developed
the theory of decoherence, which
recognizes the role of the coupling
between real quantum systems and
the environment in the rapid loss of
the coherence that endows quantum
states with their special properties. 
In this volume, he surveys the
progress in understanding decoher-
ence since his now classic article
published in Physics Today. In related
pieces, Salman Habib and Tanmoy
Bhattacharya apply the model of con-
tinuous measurement to describe the
quantum-to-classical transition and to
explore the possibility of controlling
quantum systems through continuous
quantum feedback. In 1994, as part of
the general expansion of interest in
quantum computing, Raymond
Laflamme and Manny Knill joined
Zurek in ground-breaking studies of
quantum error correction, which can
prevent quantum computers from
falling prey to decoherence, and later
adapted nuclear magnetic resonance
(NMR) technology with molecules 
to test theoretical ideas in quantum
computing.

In the early 1990s, in a parallel
development at Los Alamos, Richard
Hughes started to implement the
quantum cryptographic protocols of
Charles Bennett and Gilles Brassard.
Hughes, Beth Nordholt, Paul Kwiat,
Daniel James, and other colleagues

and postdoctoral fellows gradually
expanded their studies of quantum
cryptography to include quantum state
entanglement of photon pairs and ion-
trap quantum computing, in which the
qubits are single ions trapped in a lin-
ear array inside an electromagnetic
trap. In the late 1990s, Chris Hammel
started a collaboration with Bruce
Kane, Bob Clark, and the quantum
technology center in Sydney,
Australia, to develop a solid-state
quantum computer. 

This volume is dedicated to con-
veying the intellectual excitement of
this new field. It opens with an ele-
gant hands-on primer in which Knill
and his colleagues define the basic
unit of quantum information and
introduce all the elements needed to
process quantum information. The
presentation culminates with a
description of a simple quantum net-
work for solving a real problem and a
step-by-step solution that shows how
the quantum operations produce the
answer. The primer ends with a brief
but realistic assessment of the advan-
tages of quantum information, particu-
larly for computation. It is a good
place to gain a perspective on the
future. 

Communication, the other major
task of information processing, has
been profoundly altered by the ideas of
quantum information science.
Quantum teleportation, quantum cryp-
tography, and other efficient communi-
cation schemes exploit the simplest
qubit, a linearly polarized photon, to
achieve their goals. Often, the use of
maximally entangled pairs, or Bell
states, has a definite advantage in these
contexts. In their article on entangle-
ment, Kwiat and James succeed in
explaining and demystifying those
schemes. Hughes and Nordholt have
developed a working quantum crypto-

graphic system in fiber optics and free
space. In their article, they explain
both the protocols developed by
Bennett and Brassard and their experi-
mental systems in very simple lan-
guage, accessible to a wide audience.

Most efforts to build a scalable
quantum computer struggle with how
to construct single qubits and examine
their properties. Only ion traps, cavity
quantum electrodynamics, and liquid
NMR have been used successfully for
manipulation of more than one qubit.
Laflamme, Knill, and colleagues
explain their methods for adapting 
liquid NMR to a quantum information-
processing system. Although the 
quantum states describing this form of
information processing are provably
not entangled at any time and the sys-
tem cannot be scaled up much beyond
ten qubits, research at Los Alamos
has demonstrated the establishment
of well-defined initial states, the 
system’s controlled evolution in the
presence of real-world noisy environ-
ments, and the ability to read out 
significant results of a computation
from a single qubit.  

To date, however, quantum informa-
tion science has far more results from
theory than experiment. In his article,
Eddy Timmermans explains how dilute
Bose-Einstein condensates, many-body
quantum states created in atom traps,
have become new “laboratories”
for studying fundamental quantum 
phenomena. Dave Vieira and col-
leagues at Los Alamos are developing
an experimental capability in this area.

The diverse quantum efforts at 
Los Alamos are now supported and
fostered by the Quantum Information
Research Institute. Contact the 
steering committee at qsc@lanl.gov
for further information. 
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Quantum information processing, Science of—The theoretical, experimental and
technological areas covering the use of quantum mechanics for communication and
computation
—Kluwer Encyclopedia of Mathematics, Supplement II

Research conducted in the last few decades has established that quantum informa-
tion, or information based on quantum mechanics, has capabilities that exceed
those of traditional “classical” information. For example, in communication, quan-

tum information enables quantum cryptography, which is a method for communicating in
secret. Secrecy is guaranteed because eavesdropping attempts necessarily disturb the
exchanged quantum information without revealing the content of the communication. 
In computation, quantum information enables efficient simulation of quantum physics, a
task for which general-purpose, efficient, classical algorithms are not known to exist.
Quantum information also leads to efficient algorithms for factoring large numbers, which
is believed to be difficult for classical computers. An efficient factoring algorithm would
break the security of commonly used public-key cryptographic codes used for authenticat-
ing and securing Internet communications. Yet another application of quantum informa-
tion improves the efficiency with which unstructured search problems can be solved.
Quantum unstructured search may make it possible to solve significantly larger instances
of optimization problems, such as the scheduling and traveling salesman problems. 

Because of the capabilities of quantum information, the science of quantum informa-
tion processing is now a prospering, interdisciplinary field focused on better understand-
ing the possibilities and limitations of the underlying theory, on developing new
applications of quantum information, and on physically realizing controllable quantum
devices. The purpose of this primer is to provide an elementary introduction to quantum
information processing (see Part II), and then to briefly explain how we hope to exploit
the advantages of quantum information (see Part III). These two sections can be read
independently. For reference, we have included a glossary of the main terms of quantum
information (see page 33).

When we use the word “information,” we generally think of the things we can talk
about, broadcast, write down, or otherwise record. Such records can exist in many
forms, such as sound waves, electrical signals in a telephone wire, characters on paper,
pit patterns on an optical disk, or magnetization on a computer hard disk. A crucial
property of information is that it is fungible: It can be represented in many different
physical forms and easily converted from one form to another without changing its
meaning. In this sense, information is independent of the devices used to represent it but
requires at least one physical representation in order to be useful. 

We call the familiar information stored in today’s computers classical or deterministic
to distinguish it from quantum information. It is no accident that classical information is
the basis of all human knowledge. Any information passing through our senses is best
modeled by classical discrete or continuous information. Therefore, when considering 
any other kind of information, we need to provide a method for extracting classically
meaningful information. We begin by recalling the basic ideas of classical information in
a way that illustrates the general procedure for building an information-processing theory. 
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Part I: Classical Information

The basic unit of classical deterministic information is the bit, an abstract entity or
system that can be in one of the two states symbolized by � and �. At this point, the
symbols for the two states have no numeric meaning. That is why we have used a font
different from that for the numbers 0 and 1. By making a clear distinction between the
bit and its states, we emphasize that a bit should be physically realized as a system or
device whose states correspond to the ideal bit’s states. For example, if you are reading
this primer on paper, the system used to realize a bit is a reserved location on the sur-
face, and the state depends on the pattern of ink (� or �) in that location. In a computer,
the device realizing a bit can be a combination of transistors and other integrated-circuit
elements with the state of the bit determined by the distribution of charge. 

In order to make use of information, it must be possible to manipulate (or process)
the states of information units. The elementary operations that can be used for this pur-
pose are called gates. Two one-bit gates are the not and reset gates. Applying the not
gate to a bit has the effect of flipping the state of the bit. For example, if the initial state
of the bit is �, then the state after applying not is not (�) = �. We can present the effect
of the gate in the following form:

Initial State Final State

� → not (�) = �  , and 

� → not (�) = �  . (1)

The reset gate sets the state to � regardless of the input:

Initial State Final State

� → reset (�) = � , and 

� → reset (�) = �  . (2)

By applying a combination of not and reset gates, one can transform the state of a 
bit in every possible way. 

Information units can be combined to represent more information. Bits are 
typically combined into sequences. The states of such a sequence are symbolized by
strings of state symbols for the constituent bits. For example, a two-bit sequence can
be in one of the following four states: ��, ��, ��, and ��. The different bits are distin-
guished by their position in the sequence. 

The one-bit gates can be applied to any bit in a sequence. For example, the not
gate applied to the second bit of a three-bit sequence in the state ��� changes the 
state to ���. 

One-bit gates act independently on each bit. To compute with multiple bits, we
need gates whose action can correlate the states of two or more bits. One such gate is
the nand (“not and”) gate, which acts on two bits in a bit sequence. Its effect is to set
the state of the first bit to � if both the first and the second bit are �; otherwise, it sets
it to �. Here is what happens when nand is applied to two consecutive bits:
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Initial State Final State

�� → nand (��) = �� ,

�� → nand (��) = �� ,

�� → nand (��) = �� , and

�� → nand (��) = �� . (3)

The nand gate can be applied to any two bits in a sequence. For example, it can be
applied to the fourth and second bits (in this order) of four bits, in which case the
initial state ���� is transformed to ����, setting the fourth bit to �. 

Other operations on bit sequences include adding a new bit to the beginning
(prepend) or end (append) of a sequence. The new bit is always initialized to �� It is
also possible to discard the first or last bit regardless of its state. Versions of these
operations that are conditional on the state of another bit may also be used. An 
example is the conditional append operation: “If the kth bit is in the state �, then
append a bit.”

The gates just introduced suffice for implementing arbitrary state transformations
of a given bit sequence. Instructions for applying gates in a particular order are
called a circuit. An important part of investigations in information processing is to
determine the minimum resources required to perform information-processing tasks.
For a given circuit, the two primary resources are the number of gates and the total
number of bits used. The circuit complexity of a desired transformation is the mini-
mum number of gates needed to implement it. 

The model of computation defined by the ability to apply gates in a fixed
sequence is called the circuit model. Classical computation extends the circuit 
model by providing a means for repeating blocks of instructions indefinitely or until
a desired condition is achieved. In principle, it is possible to conceive of a general-
purpose computer as a device that repeatedly applies the same circuit to the 
beginnings of several bit sequences. In this article, we take for granted a traditional
programmable computer based on classical information. Thus, a quantum algorithm
is a program written for such a computer with additional instructions for applying
gates to quantum information. The computational power of this model is equivalent
to that of other general-purpose models of quantum computation, such as quantum
Turing machines (Yao 1993). 

For an introduction to algorithms and their analysis, refer to Thomas Cormen et
al. (1990). Christos Papadimitriou wrote (1994) a useful textbook on computational
complexity with an introduction to classical computation and computational
machine models.
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Part II: Quantum Information

The foundations of an information-processing theory can be constructed by the pro-
cedure we followed in the previous section:

1. Define the basic unit of information.
2. Give the means for processing one unit.
3. Describe how multiple units can be combined.
4. Give the means for processing multiple units.
5. Show how to convert the content of any of the extant units to classical information.

Note that the last step was not required for classical information processing.
In this section, we follow the general procedure for defining an information-processing

theory to introduce quantum information processing. A simple example that exhibits the
advantages of quantum information is given in the section “The Parity Problem” on page
21. A version of the quantum factoring algorithm is described immediately following this
article in “From Factoring to Phase Estimation” on page 38.

The Quantum Bit

The fundamental resource and basic unit of quantum information is the quantum bit
(qubit), which behaves like a classical bit enhanced by the superposition principle (see
discussion in this section). From a physical point of view, a qubit is represented by an
ideal two-state quantum system. Examples of such systems include photons (vertical and
horizontal polarization), electrons and other spin-1/2 systems (spin-up and -down), and
systems defined by two energy levels of atoms or ions. From the beginning, the two-
state system played a central role in studies of quantum mechanics. It is the simplest
quantum system, and in principle, all other quantum systems can be modeled in the state
space of collections of qubits. 

From the information-processing point of view, a qubit’s state space contains the two
“logical,” or computational, states |�〉 and |�〉. The so-called “ket” notation for these
states was introduced by Paul Dirac, and its variations are widely used in quantum
physics. One can think of the pair of symbols | and 〉 as representing the qubit system.
Their content specifies a state for the system. In this context, � and � are system-
independent state labels. When, say, � is placed within the ket, the resulting expression
|�〉 represents the corresponding state of a specific qubit. 

The initial state of a qubit is always one of the logical states. Using operations to be
introduced later, we can obtain states that are superpositions of the logical states.
Superpositions can be expressed as sums α|�〉 + β|�〉 over the logical states with com-
plex coefficients. The complex numbers α and β are the amplitudes of the superposition.
The existence of such superpositions of distinguishable states of quantum systems is one
of the basic tenets of quantum theory and is called the superposition principle. Another
way of writing a general superposition is as a vector:

(4)

where the two-sided arrow is used to denote the correspondence between expressions
that mean the same thing. 

The qubit states that are superpositions of the logical states are called pure states:
A superposition α|�〉 + β|�〉 is a pure state if the corresponding vector has length 1, that

α β
α
β

� �+ ↔






 ,
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is, |α |2 + |β |2 = 1. Such a superposition or vector is said to be normalized. (For a com-
plex number given by γ = x + iy, one can evaluate |γ |2 = x2 + y2. Here, x and y are the
real and imaginary part of γ , and the symbol i is a square root of –1, that is, i2 = –1. The
conjugate of γ is γ = x – iy. Thus, | γ |2 = γγ). Here are a few examples of states given in
both the ket and vector notation:

(5)

(6)and

(7)   

The state |ψ3〉 is obtained from |ψ2〉 by multiplication with i. It turns out that two
states cannot be distinguished if one of them is obtained by multiplying the other by a
phase eiθ. Note how we have generalized the ket notation by introducing expressions
such as |ψ〉 for arbitrary states. 

The superposition principle for quantum information means that we can have states
that are sums of logical states with complex coefficients. There is another, more familiar
type of information, whose states are combinations of logical states. The basic unit of
this type of information is the probabilistic bit (pbit). Intuitively, a pbit can be thought of
as representing the as-yet-undetermined outcome of a coin flip. Since we need the idea
of probability to understand how quantum information converts to classical information,
we briefly introduce pbits. 

A pbit’s state space is a probability distribution over the states of a bit. One very
explicit way to symbolize such a state is by using the expression {p:�, (1 – p):�}, which
means that the pbit has probability p of being � and 1 – p of being �. Thus, a state of a
pbit is a probabilistic combination of the two logical states, where the coefficients are
nonnegative real numbers summing to 1. A typical example is the unbiased coin in the
process of being flipped. If tail and head represent � and �, respectively, the coin’s state
is {1/2:�, 1/2:�}. After the outcome of the flip is known, the state collapses to one of the
logical states � and �. In this way, a pbit is converted to a classical bit. If the pbit is
probabilistically correlated with other pbits, the collapse associated with learning the
pbit’s logical state changes the overall probability distribution by a process called 
conditioning on the outcome. 

A consequence of the conditioning process is that we never actually “see” a 
probability distribution. We only see classical deterministic bit states. According to the
frequency interpretation of probabilities, the original probability distribution can only 
be inferred after one looks at many independent pbits in the same state {p:�, (1 – p):�}:
In the limit of infinitely many pbits, p is given by the fraction of pbits seen to be in the
state o. As we will explain, we can never see a general qubit state either. For qubits,
there is a process analogous to conditioning. It is called measurement and converts qubit
states to classical information. 

Information processing with pbits has many advantages over deterministic information
processing with bits. One advantage is that algorithms are often much easier to design and

ψ3
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analyze if they are probabilistic. Examples include many optimization and physics simu-
lation algorithms. In some cases, the best available probabilistic algorithm is more effi-
cient than any known deterministic algorithm. An example is an algorithm for determin-
ing whether a number is prime or not. It is not known whether every probabilistic algo-
rithm can be derandomized efficiently. There are important communication problems
that can be solved probabilistically but not deterministically. For a survey of these algo-
rithms, see Rajiv Gupta (1994a). 

What is the difference between bits, pbits, and qubits? One way to visualize the 
difference and see the enrichment provided by pbits and qubits is shown in Figure 1. 

Figure 1. Comparing State Spaces of Different Information Units
The states of a bit correspond to two points. The states of a pbit can be thought of as convex
combinations of a bit’s states and therefore can be visualized as lying on the line connecting
the two bit states. A qubit’s pure states correspond to the surface of the unit sphere in three
dimensions, where the logical states correspond to the poles. This representation of qubit
states is called the Bloch sphere. The explicit correspondence is discussed at the end of the
section “Mixtures and Density Operators.” Also refer to the definition and use of the Bloch
sphere in the article “NMR and Quantum Information Processing” on page 226. There, the cor-
respondence between the pure states and the sphere is physically motivated and comes
from a way of viewing a spin-1/2 system as a small quantum magnet. Intuitively, a state is
determined by the direction of the north pole of the magnet.

Processing One Qubit

The quantum version of the not gate for bits exchanges the two logical states; that is,
using ket notation,

not(α|�〉+ β|�〉) = α|�〉 + β|�〉 = β|�〉 + α|�〉 . (8)

In vector notation, this equation becomes
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Pbit Qubit

|�〉

11

State: � or � {p:�, (1 – p):�} α|�〉 + β|�〉
|α|2 + |β|2 = 1

Bit

00

|�〉



(9)

Another way of expressing the effect of not is by multiplying the vector by a matrix rep-
resenting not,

(10)

so that we can identify the action of not with the matrix

An even simpler gate is the one that does nothing. We call it the noop gate, and its
matrix form is the identity matrix, as shown in the following equation:

(11)

The noop and not gates are reversible. In other words, we can undo their actions by
applying other gates. For example, the action of the not gate can be undone by another 
not gate. The action of every reversible quantum gate can be represented by matrix multi-
plication, where the matrix has the additional property of preserving vector lengths. Such
matrices are called unitary and are characterized by the equation A†A = 11, where A† is 
the conjugate transpose of A and 11 is the identity matrix. (The conjugate transpose of a
matrix is computed by flipping that matrix across the main diagonal and conjugating 
the complex numbers). For gates represented by a matrices, the unitarity condition is 
necessary and sufficient for ensuring that pure states get mapped to pure states. 

Because qubit states can be represented as points on a sphere, reversible one-qubit gates
can be thought of as rotations of the Bloch sphere. This is why such quantum gates are
often called rotations. As explained in detail on page 232 in the article “NMR and
Quantum Information Processing”, rotations around the x-, y-, and z-axis are in a sense
generated by the three Pauli matrices

(12)

each of which represents a one-qubit gate. For example, a rotation around the x-axis by
an angle φ is given by e–iσxφ/2 = cos(φ/2)11 – i sin(φ/2)σx. To obtain this identity, one can
use the power series for eA, eA = ∑

k=0

∞
(1/k!)Ak, and exploit the fact that σ2

x = 11 to simplify

the expression. Here are some gates that can be defined with the help of rotations:

σ σ σx y z
i

i
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noop 
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β
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0 1

1 0

not 
α
β

β
α







=







  .

Number 27  2002  Los Alamos Science  9

Quantum Information Processing



90° x-rotation:

90° y-rotation:

φ z-rotation:

Hadamard gate: (13)

The rotation gates often show up in controlling spins or ions with radio-frequency pulses
or lasers. The Hadamard gate is used primarily by quantum programmers. It can be
expressed as a product of a 90° y-rotation and σz. 

To check directly that the rotation gates are reversible, one can determine their
inverses. In this case and as expected, the inverse of a rotation is the rotation around the
same axis in the opposite direction. For example, the inverses of the roty90° and rotzφ
gates are given by

(14)

Another useful property of the rotation gates is that the angles add when rotations are
applied around the same axis. For example, rotzφrotzθ = rotzφ+θ .

The Bra-Ket Notation for Logic Gates. The ket notation can be extended so that we
can write gates in a compact form that readily generalizes to multiple qubits. To do so,
we have to introduce expressions such as 〈ψ| = α〈�| + β〈�|. This is called the “bra”
notation. The terminology comes from the term “bracket:” The bra is the left, and the
ket is the right part of a matched pair of brackets. From the vector point of view, 〈ψ|
corresponds to the row vector (α, β). Note that a column vector multiplied by a row vec-
tor yields a matrix. In the bra-ket notation, this corresponds to multiplying a ket |ψ〉 by a
bra 〈φ|, written as |ψ〉〈φ|. Since this represents an operator on states, we expect to be able
to compute the effect of |ψ〉〈φ| on a state |ϕ〉 by forming the product. To be able to evalu-
ate such products with one-qubit bras and kets, we need the following two rules: distrib-
utivity and inner-product evaluation.

Distributivity
You can rewrite sums and products using distributivity. For example,

(15)

Observe that we can combine the amplitudes of terms, but we cannot rearrange the order
of the bras and kets in a product. 
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Inner-Product Evaluation
The product of a logical bra and a logical ket is evaluated according to the identities

(16)

It follows that for logical states, if a bra multiplies a ket, the result cancels unless the
states match, in which case the answer is 1. Applying inner-product evaluation to
Equation (15) results in 

(17)

To simplify the notation, we can omit one of the two vertical bars in products such as
〈a||b〉 and write 〈a|b〉. 

To understand inner-product evaluation, think of the expressions as products of row
and column vectors. For example,

〈�|�〉 ↔
(1  0)

(18)

That is, as vectors, the two states |�〉 and |�〉 are orthogonal. In general, if |φ〉 and 
|ψ〉 are states, then 〈φ|ψ〉 is the inner product, or “overlap,” of the two states. In the
expression for the overlap, we compute 〈φ| from |φ〉 = α|�〉 + β|�〉 by conjugating 
the coefficients and converting the logical kets to bras: 〈φ| = α〈�| + β〈�|. In the vector
representation, this is the conjugate transpose of the column vector for |φ〉, so the inner
product agrees with the usual one. Two states are orthogonal if their overlap is zero. 
We write |φ〉† = 〈φ| and 〈φ|† = |φ〉. 

Every linear operator on states can be expressed with the bra-ket notation. For exam-
ple, the bra-ket expression for the noop gate is noop = |�〉〈�| + |�〉〈�|. To apply noop to
a qubit, you multiply its state on the left by the bra-ket expression 

(19)

One way to think about an operator such as |a〉〈b| is to notice that, when it is used to
operate on a ket expression, the 〈b| picks out the matching kets in the state, which are
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α β α β
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0

1







= 0 .



then changed to |a〉. For example, we can write the not operation as not = |�〉〈�| + |�〉〈�|.
The coefficients of the |a〉〈b| in a bra-ket representation of a gate correspond to

matrix entries in the matrix representation. The relationship is defined by

(20)

Two Quantum Bits

Some states of two quantum bits can be symbolized by the juxtaposition (or multipli-
cation) of the states of each quantum bit. In particular, the four logical states |�〉|�〉,
|�〉|�〉, |�〉|�〉, and |�〉|�〉 are acceptable pure states for two quantum bits. In these expres-
sions, we have distinguished the qubits by position (first or second). It is easier to
manipulate state expressions if we explicitly name the qubits, say, A and B. We can then
distinguish the kets by writing, for example, |ψ〉A for a state of qubit A. Now, the state
|�〉|�〉 can be written with explicit qubit names (or labels) as

|�〉A |�〉B = |�〉B |�〉A = |��〉AB = |��〉BA . (21)

Having explicit labels allows us to unambiguously reorder the states in a product of
states belonging to different qubits. We say that kets for different qubits “commute.”

So far, we have seen four states of two qubits, which are the logical states that corre-
spond to the states of two bits. As in the case of one qubit, we can use the superposition
principle to get all the other pure states. Each state of two qubits is therefore of the form

α|��〉AB + β|��〉AB + γ|��〉AB + δ|��〉AB , (22)

where α, β, γ, and δ are complex numbers. Again, there is a column vector form for the
state,

(23)

and this vector has to be of unit length, that is, |α|2 + |β|2 + |γ|2 + |δ|2 = 1. When using
the vector form for qubit states, one has to be careful about the convention used for
ordering the coefficients. 

Other examples of two-qubit states in ket notation are the following:

α
β
γ
δ



















 ,

α α α α
α α
α α00 01 10 11

00 01

10 11
� � � � � � � �+ + + ↔









  .
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(24)

The first two of these states have the special property that they can be written as a product
|φ1〉A|φ2〉B of a state of qubit A and a state of qubit B. The second expression for |ψ2〉 shows
that the product decomposition is not always easy to see. Such states are called product
states. The last two states, |ψ3〉AB and |ψ4〉AB, are two of the famous Bell states. They have
no such representation as a product of independent states of each qubit. They are said to be
entangled because they contain a uniquely quantum correlation between the two qubit 
systems. Pbits can also have correlations that cannot be decomposed into product states,
but the entangled states have additional properties that make them very useful. For example,
if Alice and Bob each have one of the qubits that together are in the state |ψ�〉AB, they can
use them to create a secret bit for encrypting their digital communications (see the article
“Quantum State Entanglement” on page 52). 

Processing Two Qubits

The simplest way of modifying the state of two qubits is to apply one of the
one-qubit gates. If the gates are expressed in the bra-ket notation, all we need to do is
add qubit labels so that we know which qubit each bra or ket belongs to. For example,
the not gate for qubit B is written as

not(B) = |�〉B
B〈�| + |�〉B

B〈�| . (25)

The labels for bra expressions occur as left superscripts. To apply expressions like this
to states, we need one more rule, namely, commutation. 

Commutation 
Kets and bras with different labels can be interchanged in products (they commute).

This property is demonstrated by the following example:

(26)
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Note that we cannot merge the two vertical bars in expressions such as B〈�||�〉A because
the two terms belong to different qubits. The bars can only be merged when the expres-
sion is an inner product, which requires that the two terms belong to the same qubit. 

With the rules for bra-ket expressions in hand, we can apply the not gate to one of
our Bell states to see how it acts:

(27)

The effect of the gate was to flip the state symbols for qubit B, which results in another
Bell state. 

The gate not(B) can also be written as a 4 × 4 matrix acting on the vector representa-
tion of a two-qubit state. However, the relationship between this matrix and the
one-qubit matrix is not as obvious as for the bra-ket expression. The matrix is

(28)

which swaps the top two and bottom two entries of a state vector. 
One way to see the relationship between the one- and two-qubit representations of

the gate not(B) is to notice that because the noop gate acts as the identity and because
we can act on different qubits independently, noop(A)not(B) ≅ not(B). The matrix for
not(B) can be expressed as a Kronecker product (⊗) of the matrices for noop and not:

not( )  ,B =



















0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0
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(29)

The Kronecker product of two matrices expands the first matrix by multiplying each
entry by the second matrix. A disadvantage of the matrix representation of quantum
gates is that it depends on the number and order of the qubits. However, it is often easier
to visualize what the operation does by writing down the corresponding matrix. 

One cannot do much with one-bit classical gates. Similarly, the utility of one-qubit
gates is limited. In particular, it is not possible to obtain a Bell state starting from
|��〉AB or any other product state. We therefore need to introduce at least one two-qubit
gate not expressible as the product of two one-qubit gates. The best-known such gate is
the controlled-not (cnot) gate. Its action can be described by the statement, “if the first
bit is �, flip the second bit; otherwise, do nothing.” The bra-ket and matrix representa-
tions for this action are

(30)

The cnot gate is reversible because its action is undone if a second cnot is applied.
This outcome is easy to see by computing the square of the matrix for cnot, which
yields the identity matrix. As an exercise in manipulating bras and kets, let us calculate
the product of two cnot gates by using the bra-ket representation:

(31)
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The first step is to expand this expression by multiplying out. Expressions such as
|�〉A

A〈�||�〉A
A〈�| cancel because of the inner-product evaluation rule A〈�|�〉A = 0. One can

also reorder bras and kets with different labels and rewrite |�〉A
A〈�||�〉A

A〈�| = |�〉A
A〈�|

to get 

(32)

Here we used the fact that, when the bra-ket expression for noop is applied to the ket
expression for a state, it acts the same as (here denoted by the symbol ≅) multiplication
by the number 1. 

Using Many Quantum Bits

To use more than two, say, five qubits, we can just start with the state
|�〉A|�〉B|�〉C|�〉D|�〉E and apply gates to any one or two of these qubits. For example,
cnot(DB) applies the cnot operation from qubit D to qubit B. Note that the order of D
and B in the label for the cnot operation matters. In the bra-ket notation, we simply
multiply the state with the bra-ket form of cnot(DB) from the left. One can express
everything in terms of matrices and vectors, but now the vectors have length 25 = 32,
and the Kronecker product expression for cnot(DB) requires some reordering to enable
inserting the operation so as to act on the intended qubits. Nevertheless, to analyze the
properties of all reversible (that is, unitary) operations on these qubits, it is helpful to
think of the matrices because a lot of useful properties about unitary matrices are
known. One important result from this analysis is that every matrix that represents a
reversible operation on quantum states can be expressed as a product of the one- and
two-qubit gates introduced so far. We say that this set of gates is universal. 

For general-purpose computation, it is necessary to have access to arbitrarily many
qubits. Instead of assuming that there are infinitely many from the start, it is convenient
to have an operation to add a new qubit, namely, add. To add a new qubit labeled X in
the state |�〉X, apply add(X) to the current state. This operation can only be used if there
is not already a qubit labeled X. To implement the add(X) operation in the bra-ket nota-
tion, we multiply the ket expression for the current state by |�〉X.
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Qubit Measurements

In order to classically access information about the state of qubits, we use the meas-
urement operation meas. This is an intrinsically probabilistic process that can be applied
to any extant qubit. For information processing, one can think of meas as a subroutine
or function whose output is either � or �. The output is called the measurement 
outcome. The probabilities of the measurement outcomes are determined by the 
current state. The state of the qubit being measured is collapsed to the logical state 
corresponding to the outcome. Suppose we have just one qubit, currently in the state 
|ψ〉 = α|�〉 + β|�〉. Measurement of this qubit has the effect

(33)

The classical output is given before the new state for each possible outcome. This 
measurement behavior explains why the amplitudes have to define unit length vectors:
Up to a phase, they are associated with square roots of probabilities. 

For two qubits, the process is more involved. Because of possible correlations
between the two qubits, the measurement affects the state of the other one too, similar 
to conditioning for pbits after one “looks” at one of them. As an example, consider 
the state

(34)

To figure out what happens when we measure qubit A, we first rewrite the current state
in the form α|�〉A|φ0〉B + β|�〉A|φ1〉B, where |φ0〉B and |φ1〉B are pure states for qubit B. It
is always possible to do that. For the example given in Equation (34),
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The last step required pulling out the factor of √5/3 to make sure that |φ0〉B is properly
normalized for a pure state. Now, that we have rewritten the state, the effect of measur-
ing qubit A can be given as follows:

(36)

For the example, the measurement outcome is � with probability 5/9, in which case the
state collapses to |�〉A(1/√5|�〉B + 2/√5|�〉B). The outcome is � with probability 4/9, in
which case the state collapses to |�〉A|�〉B. The probabilities add up to 1 as they should. 

The same procedure works for figuring out the effect of measuring one of any num-
ber of qubits. Say we want to measure qubit B among qubits A, B, C, D, currently in
state |ψ〉ABCD. First, rewrite the state in the form α|�〉B|φ0〉ACD + β|�〉B|φ1〉ACD, making
sure that the ACD superpositions are pure states. Then, the outcome of the measurement
is � with probability |α|2 and � with probability |β|2. The collapsed states are
|�〉B|φ0〉ACD and |�〉B|φ1〉ACD, respectively. 

Probabilities of the measurement outcomes and the new states can be calculated sys-
tematically. For example, to compute the probability and state for outcome � of 
meas(A) given the state |ψ〉AB, one can first obtain the unnormalized ket expression
|φ′0〉B = A〈�||ψ〉AB by using the rules for multiplying kets by bras. The probability is
given by p0 = B〈φ′0|φ′0〉B, and the collapsed, properly normalized pure state is

(37)

The operator P� = |�〉A
A〈�| is called a projection operator or projector for short. If we

perform the same computation for the outcome �, we find the projector P� = |�〉A
A〈�|.

The two operators satisfy Pa
2 = Pa, P†

a = Pa, and P� + P� = 11. In terms of the projec-
tors, the measurement’s effect can be written as follows:

(38)

where p0 = AB〈ψ|P�|ψ〉AB and p1 = AB〈ψ|P�|ψ〉AB. In quantum mechanics, any pair of
projectors satisfying the properties given above is associated with a potential measure-
ment whose effect can be written in the same form. This is called a binary von
Neumann, or projective, measurement. 
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Mixtures and Density Operators

The measurement operation reads out information from qubits to pbits. What if we
discard the pbit that contains the measurement outcome? The result is that the qubits are
in a probabilistic mixture of two pure states. Such mixtures are a generalization of pure
states. The obvious way to think about a mixture is that we have a probability distribu-
tion over pure quantum states. For example, after discarding the pbit and qubit A in
Equation (36), we can write the state of B as ρ = {|α|2:|φ0〉B, |β|2:|φ1〉B}, using the nota-
tion for probability distributions introduced earlier. 

Mixtures frequently form when irreversible operations are used, such as measure-
ment. Except for measurement, the quantum gates we have introduced so far are
reversible and therefore transform pure states to pure states so that no mixtures can be
formed. One of the fundamental results of reversible classical and quantum computation
is that there is no loss in power in using only reversible gates. Specifically, it is possible
to change a computation that includes irreversible operations to one that accomplishes
the same goal, has only reversible operations, and is efficient in the sense that it uses at
most polynomial additional resources. However, the cost of using only reversible opera-
tions is not negligible. In particular, for ease of programming and, more important, when
performing repetitive error-correction tasks (see the article on this subject on page 188),
the inability to discard or reset qubits can be very inconvenient. We therefore introduce
additional operations that enable resetting and discarding. 

Although resetting has a so-called thermodynamic cost (think of the heat generated
by a computer), it is actually a simple operation. The reset operation applied to qubit A
can be thought of as the result of first measuring A, then flipping A if the measurement
outcome is |�〉, and finally discarding the measurement result. Using the notation of
Equation (36), the effect on a pure state |ψ〉AB is given by

(39)

To apply reset to an arbitrary probability distribution, you apply it to each of that distri-
bution’s pure states and combine the results to form an expanded probability distribution.
The discard(A) operation is reset(A) followed by discarding qubit A. In the expression for
the state after reset(A), therefore, all the |�〉A are removed. It is an important fact that every
physically realizable quantum operation, whether reversible or not, can be expressed as a
combination of add operations, gates from the universal set, and discard operations. 

The representation of mixtures using probability distributions over pure states is
redundant. That is, many probability distributions are physically indistinguishable. A
nonredundant description of a quantum state can be obtained if density operators are
used. The density operator for the mixture ρ in Equation (39) is given by

(40)

The general rule for calculating the density operator from a probability distribution is
the following: For each pure state |φ〉 in the distribution, calculate the operators |φ〉〈φ|
and sum them weighted by their probabilities. 

ˆ  .ρ α φ φ β φ φ= +2
0

2
1 10 B

B
B
B

reset( ) : ,  :A
AB A B A B

ψ α φ β φ= {  }2
0
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There is a way to apply gates to the density operators defined by states. If the gate
acts by the unitary operator U, then the effect of applying it to  ρ̂ is given by U ρ̂U†

where U† is the conjugate transpose of U. (In the bra-ket expression for U, U† is
obtained by replacing all complex numbers by their conjugates, and terms such as |φ〉〈ϕ|,
by |ϕ〉〈φ|.) 

The relationship between a qubit’s state space and a sphere can be explained in terms
of the qubit’s density operators. In matrix form, this operator is a 2 × 2 matrix, which
can be written uniquely as a sum (11 + xσx + yσy + zσz)/2. One can check that, if the
density operator |ψ〉〈ψ| for a qubit’s pure state is written as such a sum,

|ψ〉〈ψ| = (11 + xσx + yσy + zσz)/2 , (41)

then the vector (x, y, z) thus obtained is on the surface of the unit sphere in three dimen-
sions. In fact, for every vector (x, y, z) on the unit sphere, there is a unique pure state
satisfying Equation (41). Since the density operators for mixtures are arbitrary, convex
(that is, probabilistic) sums of pure states, the set of (x, y, z) thus obtained for mixtures
fills out the unit ball. The rotations introduced earlier modify the vector (x, y, z) in the
expected way, by rotation of the vector around the appropriate axis. See the article
“NMR and Quantum Information Processing” on page 232 for more details. 

Quantum Computation

The model of computation defined by the one- and two-qubit gates and the opera-
tions add, meas, and discard qubits is called the quantum network model. A sequence
of instructions for applying these operations is called a quantum network. Quantum
computation extends the network model by providing a means for repeating blocks of
instructions. Such means can be specified by a formal machine model of computation.
There are several such models of classical and quantum computers. One of the best
known is the Turing machine, which has a quantum analogue, the quantum Turing
machine. This model has its uses for formal studies of computation and complexity 
but is difficult to program. Fortunately, as mentioned in Part I, there is no loss of com-
putational power if the means for repeating instructions is provided by a classical com-
puter that can apply gates and other operations to qubits. A general quantum algorithm
is a program written for such a computer. 

There are three practical methods that can be used to write quantum networks and
algorithms. The first is to use the names for the different operations and algebraically
multiply them. The second is to draw quantum networks, which are pictorial representa-
tions of the sequence of steps in time, somewhat like flowcharts without loops. The third
is to use a generic programming language enhanced with statements for accessing and
modifying quantum bits. The first two methods work well as long as the sequence is
short and we do not use many operations that depend on measurement outcomes or
require loops. They are often used to describe subroutines of longer algorithms presented
either in words or by use of the third method. 

To see how to use the different methods and also to illustrate the power of quantum
computation, we work out a short quantum algorithm that solves the so-called parity
problem. 
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The Parity Problem. Given is a “black-box” quantum operation BB(ABC) that has
the following effect when applied to a logical basis state:

BB(ABC)|aAaB〉AB|aC〉C = |aAaB〉ΑΒ|aC ⊕ (bAaA ⊕ bBaB)〉C  , (42)

where bA and bB are 0 or 1. The actual values of bA and bB are unknown. The problem
is to determine what bA and bB are by using the black box only once. 

The terminology and definition of the operation BB(ABC) require explanation. In
computation, we say that an operation is a black box, or an “oracle,” if we have no
access whatsoever to how the operation is implemented. In a black-box problem, we are
promised that the black box implements an operation from a specified set of operations.
In the case of the parity problem, we know that the operation is to add one of four possi-
ble parities (see below). The problem is to determine that parity by using the black box
in a network. Black-box problems serve many purposes. One is to study the differences
between models of computation, just as we are about to do. In fact, black-box problems
played a crucial role in the development of quantum algorithms by providing the first
and most convincing examples of the power of quantum computers (Bernstein and
Vazirani 1993, Simon 1994). Some of these examples involve generalizations of the par-
ity problem. Another purpose of black-box problems is to enable us to focus on what
can be learned from the input/output behavior of an operation without having to analyze
its implementation. Focusing on the input/output behavior is useful because, in many
cases of interest, it is difficult to exploit knowledge of the implementation in order to
determine a desirable property of the operation. A classical example is the well-known
satisfiability problem, in which we are given a classical circuit with one output bit and
we need to determine whether there is an input for which the output is �. Instead of try-
ing to analyze the circuit, one can look for and use a general-purpose black-box search
algorithm to find the satisfying input. 

In the definition of the effect of BB(ABC), the operation ⊕ is addition modulo 2, so 
1 ⊕ 1 = 0, and all the other sums are as expected. As the state symbols have a numeric
meaning now, we will use the number font for states. To see what BB does, suppose that
bA and bB are both 1. Then BB adds (modulo 2) the parity of the logical state in AB to
the logical state of C. The parity of a logical state is 0 if the number of ls is even and 1
if it is odd. The action of BB for this example is given by

(43)

BB

BB
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The action of the black box is extended to superpositions by linear extension. This
means that to apply BB to a superposition of the logical states, we simply apply it to
each logical summand and add the results. Different values of bA and bB correspond to
different parities. For example, if bA = 1 and bB = 0, then the parity of the state in A is
added to the state in C. In this sense, what is added is the parity of a subset of the two
qubits AB. Thus, one way of thinking about the problem is that we wish to find out
which subset’s parity the black box is using. 

We can give an algorithm that solves the parity problem using each of the three meth-
ods for describing quantum networks. Here is an algebraic description of a solution,
qparity(ABC), given as a product of quantum gates that involves one use of the black
box. We defer the explanation of why this solution works until after we show how to
represent the algorithm pictorially, using quantum networks. 

(44)

The output of the algorithm is given by the classical outputs of the measurements of
qubit A, which yield bA, and of qubit B, which yield bB. As is conventional, in writing
products of linear operators, the order of application in Equation (44) is right to left, as
in a product of matrices applied to a column vector. This order of terms in a product is,
however, counterintuitive, particularly for operations to be performed sequentially. It is
therefore convenient to use left to right notation, as is done in describing laser or radio-
frequency pulse sequences, and to put dots between gates to indicate left to right order:

(45)

In this representation, the first operation is add(A), the second is H(A) (the Hadamard
gate on qubit A), and so on.

The algebraic specification of the algorithm as products of gates does not make it
easy to see why the algorithm works. It is also difficult to see which operations depend
on each other. Such dependencies are used to determine whether the operations can be
parallelized. Quantum networks make these tasks simpler. The quantum network for the
above sequence is shown in Figure 2. 

To understand how the quantum network illustrated in Figure 2 solves the parity
problem, we can follow the states as the network is executed from left to right, using the
indicated checkpoints. Using vector notation for the states, at checkpoint 1, the state is

(46)

where we used Kronecker product notation to denote the states of A, B, and C in this
order. In the next time step, the network involves applying Hadamard gates—see
Equation (13)—to A and B and a not gate—see Equation (9)—to C. At checkpoint 2,
this operation results in the state
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Next, a Hadamard gate is applied to C, so that at checkpoint 3, we have 

(48)

The next event involves applying the black box. To understand what happens, note that
the effect of the black box can be described as, “apply not to C if the parity according to
bA and bB of the logical state of AB is 1.” The current state of C is such that, if not is
applied, only the sign changes:

(49)

Now, AB is in a superposition of each of the logical states, and conditional on the logi-
cal state and the (hidden) parity, the sign changes. As a result, although the state of C
does not change, a phase is “kicked back” to AB. A generalization of this effect is at the
heart of Alexei Kitaev’s version of Peter Shor’s quantum factoring algorithm (see the
article “From Factoring to Phase Estimation” on page 38). At the next checkpoint, and
after some arithmetic to check which logical states change sign, we can write the state
as 

(50)

Notice that qubits A and B are in orthogonal states for different values of bA and bB. It
suffices to apply the Hadamard transform again to A and B to get 
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Figure 2. Quantum
Network for Solving the
Parity Problem 
A quantum network has a line
(horizontal in this case) for
each qubit. The line can be
thought of as the timeline for
the qubit and is shown in
blue. Each gate is drawn as a
box, circle, or other element
intercepting the lines of the
qubits it acts on. In this case,
time runs from left to right.
Each qubit’s timeline starts 
at the point where it is added.
In this example, the qubits’
timelines end when they are
measured, at which point a
classical bit (brown timeline)
containing the measurement
outcome is introduced. The
operation BB is illustrated 
as a black box. The numbers
underneath the network refer
to checkpoints used to
explain how the network
solves the parity problem.
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(51)   

Measurements of A and B now reveal the previously unknown bA and bB.
As can be seen, the visual representation of a quantum network eases the tasks of fol-

lowing what happens. This is why it is used extensively for presenting basic subroutines
and algorithms in quantum computation. A guide to the commonly used network ele-
ments is given in Table I. 

When designing or describing complicated algorithms for quantum computers, pro-
viding everything in terms of quantum networks can become difficult, particularly
when an important part of the algorithm consists of computations that are best done on
a classical computer. For example, a full description of Shor’s algorithm for factoring
integers (see the article “From Factoring to Phase Estimation” on page 38) includes a
significant amount of classical preprocessing, which determines choices made in the
quantum algorithm, and classical postprocessing, which computes a factor from the
measured result by a continued fraction algorithm. For such algorithms, one can use a
programming language similar to Pascal, BASIC, or C enhanced with statements to
access quantum bits and to apply quantum operations. For algorithm design, computer
scientists often use a semiformal language called pseudocode (Cormen et al. 1990).
With a simple extension called quantum pseudocode, the algorithm for the parity 
problem can be written as follows:

BBPARITY(BB)

Input: Access to a quantum black box BB that acts on three qubits by adding a 
parity function of the first two qubits to the third 

Output: The two bits bA and bB of the parity function

foreach i ∈ {A, B, C}

← |�〉

C: Initialize three one-qubit registers      , i = A, B, C. 

The corner bracket annotation declares ai as a quantum register. 

end

← σx

foreach i ∈ {A, B, C}

← H  

end

← BB

C: refers to the three-qubit register consisting of the       . 

foreach i ∈ {A, B}

← H
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a

aC

ai

aC

ai ai

a

a ai

ai ai



bi ← meas

end

return bA, bB

end

Any classical programming language can be extended with statements to access and
manipulate quantum registers. 

Now, that we have looked at the quantum solution to the parity problem, let us 
consider the question of the least number of black-box applications required by a classical
algorithm: Each classical use of the black box can only give us one bit of information. In
particular, one use of the black box with input aAaB reveals only the parity of aAaB accord-
ing to the hidden parameters bA and bB. Each use of the black box can therefore only help
us distinguish between two subsets of the four possible parities. At least two uses of the
black box are therefore necessary. Two uses are also sufficient. To determine which of the
four parities is involved, use the black box first with input aAaB = 10 and then with input
aAaB = 01. As a result of this argument, one can consider the parity problem as a simple
example of a case in which there is a more efficient quantum algorithm than is possible

Number 27  2002  Los Alamos Science  25

Quantum Information Processing

Table I. Quantum Network Elements

Gate Names
and Their

Abbreviations
Gate

Symbols Algebraic Form Matrix Form

Add/Prepare, add
0

If applied to an existing qubit

{|�〉〈�|, |�〉〈�|}
(operator mixture)

1 0

0 0

or

0 1

0 0

































  

Measure, meas
Z b

{�:|�〉〈�|,�:|�〉〈�|} 1 0

0 0

or

0 0

0 1

































  

Not, not, σx

or

|�〉〈�| + |�〉〈�| 0 1

1 0













Hadamard, H
H e–iσyπ / 4σz 1

2

1 1

1 1−

















Phase Change, S(eiφ) ei eiφ / 2e–iσzφ / 2 1 0

0 eiφ











ai
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Table I. (Continued)

Gate Names
and Their

Abbreviations
Gate

Symbols Algebraic Form Matrix Form

y-Rotation, Yθ Y e–iσyθ / 2 cos /2 sin /2

sin /2 cos /2

θ θ

θ θ

( ) − ( )

( ) ( )
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sin /2 cos /2
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θ θ
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classically. However, it is worth noting that the comparison is not entirely fair: A truly classi-
cal oracle answering parity questions or implementing the black box on the states of classical
bits is useless to a quantum algorithm. To take advantage of such an algorithm, it must be
possible to use superpositions that are not implicitly collapsed. Collapse can happen if 
the oracle makes a measurement or otherwise “remembers” the question that it was asked.

Resource Accounting

When trying to solve a problem using quantum information processing, an important
issue is to determine what physical resources are available and how much of each
resource is needed for the solution. As mentioned before, in classical information, the
primary resources are bits and operations. The number of bits used by an algorithm is its
space requirement; the number of operations used, its time requirement. If parallel com-
putation is available, one can distinguish between the total number of operations (work)
and the number of parallel steps (time).

When quantum information processing is used, the classical resources are still 
relevant for running the computer that controls the quantum system and performs any
preprocessing and postprocessing tasks. The main quantum resources are analogous to
the classical ones: Quantum space is the number of qubits needed, and quantum time,
the number of quantum gates. Because it turns out that reset operations have a thermo-
dynamic cost, one can count irreversible quantum operations separately. This accounting
of the resource requirements of algorithms and of the minimum resources needed to
solve problems forms the foundation of quantum complexity theory. 

As a simple example of resource accounting, consider the algorithm for the parity
problem. No classical computation is required to decide which quantum gates to apply
or to determine the answer from the measurement. The quantum network consists of a
total of 11 quantum gates (including add and meas operations) and one oracle call (the
application of the black box). In the case of oracle problems, one usually counts the
number of oracle calls first, as we have done in discussing the algorithm. The network is
readily parallelized to reduce the time resource to 6 steps. 

Part III: Advantages of Quantum Information

The notion of quantum information as explained in this primer was established in the
1990s. It emerged from research focused on understanding how physics affects our
capabilities to communicate and process information. The recognition that usable types
of information need to be physically realizable was repeatedly emphasized by Rolf
Landauer, who proclaimed that “information is physical” (1991). Beginning in the
1960s, Landauer studied the thermodynamic cost of irreversible operations in computa-
tion (1961). Charles Bennett showed that, by using reversible computation, this cost can
be avoided (1973). Limitations of measurement in quantum mechanics were investigated
early by researchers such as John von Neumann (1932a and 1932b) and later by
Alexander Holevo (1973b) and Carl Helstrom (1976). Holevo introduced the idea of
quantum communication channels and found bounds on their capacity for transmitting
classical information (1973a). Initially, most work focused on determining the physical
limitations placed on classical information processing. The fact that pairs of two-level
systems can have correlations not possible for classical systems was proved by John
Bell (1964). Subsequently, indications that quantum mechanics offers advantages to
information processing came from Stephen Wiesner’s studies of cryptographic applica-
tions in the late 1960s. Wiesner’s work was not recognized, however, until the 1980s,
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when Bennett, Gilles Brassard, Seth Breidbart, and Wiesner introduced (1982) the idea
of quantum cryptography, which can be used to communicate in secret. 

Initially, the term quantum computation was mostly used to refer to classical comput-
ers realized with quantum mechanical systems. In the 1980s, Paul Benioff (1980),
Richard Feynman (1982), and Yuri Manin (1980) introduced the idea of a quantum com-
puter based on quantum information. They noted that the apparent exponential complex-
ity of simulating quantum mechanics on a classical computer might be overcome if one
could use a computer based on quantum mechanics. A formal model of quantum Turing
machines was soon defined by David Deutsch (1985), who later also introduced quan-
tum networks (1989). Deutsch and Richard Jozsa (1992) were the first to introduce a
black-box problem that could be solved deterministically on a quantum computer in
fewer steps than on a classical computer. 

In spite of suggestions that it could lead to large efficiency improvements in simulat-
ing physics, quantum information processing was still largely an academic subject.
Based on work by Ethan Bernstein and Umesh Vazirani (1993) that formalized quantum
complexity theory, Dan Simon (1994) showed that, for black-box problems, quantum
computers can be exponentially more efficient than classical deterministic or probabilis-
tic computers, giving the first indication of a strong advantage for quantum information
processing. It was Shor’s algorithm for factoring large integers (1994 and 1997) that
finally convinced a larger community that quantum information was more than just a
tool for realizing classical computers. This change in attitude was in no small part due to
the fact that the security of commonly used cryptographic protocols is based on the dif-
ficulty of factoring. 

At that point, it was still generally believed that the fragility of quantum states made
it unlikely for reasonably large quantum computers to be realized in practice. But the
discovery by Shor (1995) and Andrew Steane (1996) that quantum error correction was
possible soon changed that view (for an introductory overview, see the article on quan-
tum error correction on page 188). 

Because the usefulness and realizability of quantum information has been recognized,
the science of quantum information processing is a rapidly growing field. As quantum
information becomes increasingly accessible by technology, its usefulness will be more
apparent. The next few sections discuss what we currently know about applications of
quantum information processing. Refer to Michael Nielsen and Isaac Chuang (2001) as
a useful reference text on quantum computation and information with historical notes. 

Quantum Algorithms

Shor’s factoring algorithm, which precipitated much of the current work in quantum
information processing, is based on a quantum realization of the fast Fourier transform. 
The most powerful version of this technique is now represented by the phase estimation
algorithm of Kitaev (1995) as formalized by Richard Cleve et al. (1998). (For an explana-
tion, see the article “From Factoring to Phase Estimation” on page 38.) The best-known
application of quantum factoring is cryptanalysis, where it allows efficiently breaking the
currently used public-key cryptographic codes. Whether there are any constructive applica-
tions of quantum factoring and its generalizations remains to be determined. For users of
public-key cryptography, a crucial question is, “How long can public-key codes based on
factoring continue to be used safely?” To attempt an answer to this question, one can note
that to break a code with a typical key size of 1000 bits requires more than 3000 qubits and
108 quantum gates, which is well out of reach of current technology. However, it is conceiv-
able that a recording of encrypted information transmitted in 2000 can be broken in the next
“few” decades. 
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Shor’s quantum factoring algorithm was not the first with a significant advantage over
classical algorithms. The first proposed quantum algorithms with this property were for sim-
ulating quantum mechanical systems. These algorithms simulate the evolution of a reason-
ably large number of interacting quantum particles—for example, the electrons and nuclei in
a molecule. The algorithms’ outputs are what would be measurable physical quantities of the
system being simulated. The known methods for obtaining these quantities on classical
computers scale exponentially with the number of particles, except in special cases. 

The idea of using quantum computers for simulating quantum physics spurred the
work that eventually led to the quantum factoring algorithm. However, that idea did not
have the broad scientific impact that the quantum factoring algorithm had. One reason
is that, because of its cryptographic applications, factoring is a heavily studied problem
in theoretical computer science and cryptography. Because so many people have tried to
design efficient algorithms for factoring and failed, the general belief that factoring is
hard for classical computers has a lot of credibility. In contrast, a quantum physics sim-
ulation has no simple formulation as an algorithmic problem suitable for study in theo-
retical computer science. Furthermore, many researchers still believe that the physically
relevant questions can be answered with efficient classical algorithms, requiring only
more cleverness on the part of algorithm designers. Another reason for the lack of
impact is that many of the fundamental physical quantities of interest are not known to
be efficiently accessible even on quantum computers. For example, one of the first
questions about a physical system with a given Hamiltonian (energy observable) is,
“What is the ground-state energy?” It is known that the ability to efficiently answer this
question for physically reasonable Hamiltonians leads to efficient algorithms for hard
problems, such as the traveling salesman or the scheduling problems. In spite of occa-
sional claims to the contrary, an efficient quantum solution to these problems is widely
considered unlikely. 

Most quantum algorithms for physics simulations are based on a direct emulation of
a quantum mechanical system’s evolution. The focus of the original proposals by
Feynman and others was on how to implement the emulation using a suitable formula-
tion of general-purpose quantum computers. After such computers were formalized by
Deutsch, the implementation of the emulation was generalized and refined by Seth
Lloyd (1996), Wiesner (1996), and Christof Zalka (1998). The ability to emulate the
evolution of quantum systems is actually widely used by classical Monte Carlo algo-
rithms for simulating physics. In those algorithms, state amplitudes are, in effect, repre-
sented by expectations of random variables that are computed during the simulation. As
in the case of quantum algorithms for physics emulation, Monte Carlo algorithms effi-
ciently evolve the representation of the quantum system. The inefficiency of the classical
algorithm arises only in determining a physical quantity of interest. In the case of Monte
Carlo algorithms, the measurement of a physical quantity suffers from the so-called sign
problem, often resulting in exponentially large, random errors that can be reduced only
by repeating the computation exponentially many times. In contrast, the quantum algo-
rithms for emulation can determine many (but not all) of the interesting physical quanti-
ties with polynomially bounded statistical errors. How to efficiently implement measure-
ments of these quantities has been the topic of more recent work in this area, much of
which is based on variants of the phase-estimation algorithm (Terhal and DiVincenzo
2000, Knill and Laflamme 1998, Abrams and Lloyd 1999, Ortiz et al. 2001,
Miquel et al. 2002). 

Although several researchers have suggested that there are interesting quantum physics
simulations that can be implemented with well below 100 qubits, one of the interesting
problems in this area of research is to come up with a specific simulation algorithm using
small numbers of qubits and quantum gates, an algorithm that computes an interesting
physical quantity not easily obtainable using available classical computers. 
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Another notable algorithm for quantum computers, unstructured quantum search, was
described by Lov Grover (1996). Given is a black box that computes a binary function f
on inputs x with 0 ≤ x < N. The function f has the property that there is a unique input a
for which f(a) = 1. The standard quantum version of this black box implements the trans-
formation f̂ |x〉|b〉 = |x〉|b ⊕ f(x)〉, where b is a bit and b ⊕ f(x) is computed modulo 2.
Unstructured quantum search finds a quadratically faster, that is, in time of order N1/2,
than the best classical black-box search, which requires time of order N. The context for
this algorithm is the famous P ≠ NP conjecture, which is captured by the following 
algorithmic problem: Given is a classical circuit C that computes an output. Is there an
input to the circuit for which the circuit’s output is �? Such an input is called a satisfying
input or assignment. For any given input, it is easy to check the output, but an efficient
algorithm that finds a satisfying input is conjectured to be impossible. This is the P ≠ NP
conjecture. Generalizations of Grover’s search algorithm—amplitude amplification
(Brassard et al. 1998)—allow finding satisfying inputs faster than naive, classical search
does, which tries every possible input in some, possibly random, order. It is worth noting,
however, that if sufficient classical parallelism is available, quantum search loses many 
of its advantages. 

The three algorithms just described capture essentially all the known algorithmic
advantages of quantum computers. Almost all algorithms that have been described are
applications of phase estimation or of amplitude amplification. These algorithms well
justify developing special-purpose quantum information-processing technology. Will
general-purpose quantum computers be useful? More specifically, what other algorith-
mic advantages do quantum computers have? 

Quantum Communication

Quantum communication is an area in which quantum information has proven (rather
than conjectured) advantages. The best-known application is quantum cryptography,
whereby two parties, Alice and Bob, can generate a secret key using a quantum communi-
cation channel (for example, photons transmitted in optical fiber) and an authenticated
classical channel (for example, a telephone line). Any attempt at learning the key by eaves-
dropping is detected. A quantum protocol for generating a secret key is called a quantum-
key-exchange protocol. There are no equally secure means for generating a secret key by
using only classical deterministic channels. Few quantum operations are needed to imple-
ment quantum key exchange, and as a result, there are working prototype systems (Hughes
et al. 2000, Townsend 1998, Ribordy et al. 2001). To overcome the distance limitations
(tens of kilometers) of current technology requires the use of quantum error correction and
hence more demanding quantum technology. 

Quantum key exchange is one of an increasing number of multiparty problems that can
be solved more efficiently with quantum information. The area of research concerned with
how several parties at different locations can solve problems while minimizing communi-
cation resources is called communication complexity. For quantum communication com-
plexity (Cleve and Burhman 1997), the communication resources include either shared
entangled qubits or a means for transmitting quantum bits. A seminal paper by Howard
Burhman, Cleve, and Wim van Dam (2000) shows how the nonclassical correlations 
present in maximally entangled states lead to protocols based on such states that are more
efficient than any classical deterministic or probabilistic protocol achieving the same goal.
Ran Raz (1999) showed that there is an exponential improvement in communication
resources for a problem in which Alice and Bob have to answer a question about the 
relationship between a vector known to Alice and a matrix known to Bob. Although this
problem is artificial, it suggests that there are potentially useful advantages to be gained
from quantum information in this setting. 
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Quantum Control

According to Moore’s law of semiconductor technology, the size of transistors is
decreasing exponentially, by a factor of about .8 every year. If this trend continues, then
over the next few decades, devices will inevitably be built whose behavior will be prima-
rily quantum mechanical. For the purpose of classical computation, the goal is to remove
the quantum behavior and stabilize classical information. But quantum information offers
an alternative: It is possible to directly use quantum effects to advantage. Whether or not
this alternative is useful (and we believe it is), the ideas of quantum information can be
used to systematically understand and control quantum mechanical systems. 

The decreasing size of semiconductor components is a strong motivation to strive for
better understanding the behavior of condensed-matter quantum mechanical systems.
But there is no reason to wait for Moore’s law: There are a rapidly increasing number of
experimental systems in which quantum mechanical effects are being used and investi-
gated. Examples include many optical devices (lasers, microwave cavities, entangled
photon pairs), nuclear magnetic resonance with molecules or in solid state, trapped ion
or atom systems, Rydberg atoms, superconducting devices (Josephson junctions and
SQUIDs), and spintronics (electron spins in semiconductor devices). Many of these sys-
tems are being considered as candidates for realizing quantum information processing.
Yet, regardless of the future of quantum information processing, there is ample motiva-
tion for studying these systems. 

Outlook

The science of quantum information processing is promising a significant impact on
how we process information, solve algorithmic problems, engineer nanoscale devices,
and model fundamental physics. It is already changing the way we understand and con-
trol matter at the atomic scale, making the quantum world more familiar, accessible, and
understandable. Whether or not we do most of our everyday computations by using the
classical model, it is likely that the physical devices that support these computations will
exploit quantum mechanics and integrate the ideas and tools that have been developed
for quantum information processing. �

Acknowledgment

We thank Nikki Cooper and Ileana Buican for their extensive encouragement 
and editorial help.

Further Reading

Abrams, D. S., and S. Lloyd. 1999. Quantum Algorithm Providing an Exponential Speed Increase for Finding 

Eigenvalues and Eigenvectors. Phys. Rev. Lett. 83: 5162.

Barenco, A., C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, et al. 1995. Elementary Gates 

for Quantum Computation. Phys. Rev. A 52: 3457.

Bell, J. S. 1964. On the Einstein-Podolsky-Rosen Paradox. Phys. 1: 195. 

Benioff, P. 1980. The Computer as a Physical System: A Microscopic Quantum Mechanical Hamiltonian 

Model of Computers as Represented by Turing Machines. J. Stat. Phys. 22: 563.

Bennett, C. H. 1973. Logical Reversibility of Computation. IBM J. Res. Dev. 17: 525.

Bennett, C. H., G. Brassard, S. Breidbart, and S. Wiesner. 1982. Quantum Cryptography, or Unforgeable 

Subway Tokens. In Advances in Cryptology: Proceedings of Crypto ‘82. Edited by D. Chaun, R. L. Rivest,

and A. T. Sherman, p. 267. New York: Plenum Press. 

Number 27  2002  Los Alamos Science  31

Quantum Information Processing

Contact Information

E. Knill: knill@lanl.gov

R. Laflamme: laflamme@iqc.ca

H. Barnum: barnum@lanl.gov

D. Dalvit: dalvit@lanl.gov

J. Dziarmaga: ufjacekd@th.if.uj.edu.pl

J. Gubernatis: jg@lanl.gov

L. Gurvits: gurvits@lanl.gov

G. Ortiz: g_ortiz@lanl.gov

L. Viola: lviola@lanl.gov

W. Zurek: whz@lanl.gov

Emanuel (Manny) Knill received his 
Ph. D. in pure mathematics from the
University of Colorado at Boulder in
1991. Since 1992, he has been with
Los Alamos National Laboratory.
Manny has worked on various aspects
of quantum information processing
since 1995. (Photo of Augustus)



Bernstein, E., and U. Vazirani. 1993. Quantum Complexity Theory. In Proceedings of the 25th Annual ACM 

Symposium on the Theory of Computing 1993, p. 11. New York: ACM Press.

Bolker, E. D. 1970. Elementary Number Theory: An Algebraic Approach. New York: W. A. Benjamin, Inc. 

Brassard, G., P. Hoyer, and A. Tapp. 1998. Quantum Counting. In Automata, Languages and Programming,

Proceedings of ICALP ’98, Vol. 1443 of Lecture Notes in Computer Science. Edited by K. G. Larsen, S. 

Skyum, and G. Winskel, p. 820. Berlin: Springer Verlag. 

Burhman, H., R. Cleve, and W. Van Dam. 2000. Quantum Entanglement and Communication Complexity. 

SIAM J. Comput. 30: 1829. 

Cleve, R., and H. Buhrman. 1997. Substituting Quantum Entanglement for Communication. 

Phys. Rev. A 56: 1201.

Cleve, R., A. Ekert, C. Macchiavello, and M. Mosca. 1998. Quantum Algorithms Revisited. 

Proc. R. Soc. London, Ser. A 454: 339. 

Cormen, T. H., C. B. Leiserson, and R. L. Rivest. 1990. Introduction to Algorithms. Cambridge, MA:

MIT Press. 

Deutsch, D. 1985. Quantum Theory, The Church-Turing Principle and the Universal Quantum Computer. 

Proc. R. Soc. London, Ser. A 400: 97. 

———. 1989. Quantum Computational Networks. Proc. R. Soc. London, Ser. A 425: 73.

Deutsch, D., and R. Jozsa. 1992. Rapid Solution of Problems by Quantum Computation. 

Proc. R. Soc. London, Ser. A 439: 553. 

Ekert, A. 1998. From Quantum Code-Making to Quantum Code-Breaking. In The Geometric Universe, p. 195.

Oxford: Oxford University Press.

Feynman, R. P. 1982. Simulating Physics with Computers. Int. J. Theor. Phys. 21: 467. 

Griffiths, R. B., and C.-S. Niu. 1996. Semiclassical Fourier Transform for Quantum Computation. 

Phys. Rev. Lett. 76: 3228. 

Grover, L. K. 1996. A Fast Quantum Mechanical Algorithm for Database Search. In Proceedings of the 28th 

Annual ACM Symposium on the Theory of Computation, p. 212, New York: ACM Press. 

Gupta, R., S. A. Smolka, and S. Bhaskar. 1994. On Randomization in Sequential and Distributed Algorithms. 

ACM Comput. Surveys 26: 7. 

Hardy, G. H., and E. M. Wright. 1979. An Introduction to the Theory of Numbers. Fifth edition. London:

Oxford University Press. 

Helstrom, C. W. 1976. Quantum Detection and Estimation Theory. Mathematics in Science and Engineering

Vol. 123. New York: Academic Press. 

Holevo, A. S. 1973a. Bounds for the Quantity of Information Transmitted by a Quantum Communication 

Channel. Probl. Inf. Transm. 9: 177. 

———. 1973b. Statistical Problems in Quantum Physics. In Proceedings of the Second Japan-USSR 

Symposium on Probability Theory, Lecture Notes in Mathematics Vol. 330. Edited by G. Maruyama 

and Y. V. Prokhorov, p. 104. Berlin: Springer Verlag. 

Hughes, R. J., G. L. Morgan, and C. G. Peterson. 2000. Quantum Key Distribution Over a 48-km 

Optical Fibre Network. J. Modern Opt. 47: 533. 

Kitaev, A. Yu. 1995. Quantum Measurements and the Abelian Stabilizer Problem. [Online]:

http://eprints.lanl.gov. (quant-ph/9511026).

Knill, E., and R. Laflamme. 1998. On the Power of One Bit of Quantum Information. 

Phys. Rev. Lett. 81: 5672. 

Landauer, R. 1961. Irreversibility and Heat Generation in the Computing Process. IBM J. Res. Dev. 5: 183. 

———. 1991. Information is Physical. Phys. Today 44: 22.

Lloyd, S. 1996. Universal Quantum Simulators. Science 273: 1073.

Manin, Y. I. 1980. The Computable and the Not Computable. Moscow: Sovetskoye Radio. (In Russian).

Miquel, C., J. P. Paz, M. Saraceno, E. Knill, R. Laflamme, and C. Negrevergne. 2002. Interpretation of

Tomography and Spectroscopy as Dual Forms of Quantum Computations. Nature 418: 59. 

Nielsen, M. A., and I. L. Chuang. 2001. Quantum Computation and Quantum Information. Cambridge:

Cambridge University Press. 

32 Los Alamos Science Number 27  2002

Quantum Information Processing



Ortiz, O., J. E. Gubernatis, E. Knill, and R. Laflamme. 2001. Quantum Algorithms for Fermionic Simulations. 

Phys. Rev. A 64: 022319.

Papadimitriou, C. H. 1994. Computational Complexity. Reading, MA: Addison-Wesley. 

Raz, R. 1999. Exponential Separation of Quantum and Classical Communication Complexity. In Proceedings 

of the 3lst Annual ACM Symposium on the Theory of Computation (STOC), p. 358. El Paso, TX:

ACM Press. 

Ribordy, O., J. Brendel, J.-D. Gautier, N. Gisin, and H. Zbinden. 2001. Long-Distance Entanglement-Based 

Quantum Key Distribution. Phys. Rev. A 63: 012309. 

Shor, P. W. 1994. Algorithms for Quantum Computation: Discrete Logarithms and Factoring. In Proceedings 

of the 35’th Annual Symposium on Foundations of Computer Science. p. 124. Los Alamitos, CA:

IEEE Press.

———. 1995. Scheme for Reducing Decoherence in Quantum Computer Memory. Phys. Rev. A 52: 2493.

———. 1997. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a 

Quantum Computer. SIAM J. Comput. 26: 1484. 

Simon, D. R. 1994. On the Power of Quantum Computation. In Proceedings of the 35th Annual Symposium on

Foundations of Computer Science, p. 116. Los Alamitos, CA: IEEE Press. 

Steane, A. 1996. Multiple Particle Interference and Quantum Error Correction. Proc. R. Soc. London, Ser.

A 452: 2551

Terhal, B. M., and D. P. DiVincenzo. 2000. Problem of Equilibration and the Computation of Correlation 

Functions on a Quantum Computer. Phys. Rev. A 61: 022301. 

Townsend, P. D. 1998. Quantum Cryptography on Optical Fiber Networks. Opt. Fiber Tech.: Mat., Dev.,

Sys. 4: 345.

von Neumann, J. 1932a. Der Messprozess. Ch. VI. In Mathematische Grundlagen der Quantenmechanik. 

Berlin: Springer Verlag. 

———. 1932b. “Messung und Reversibilität.” Allgemeine Betrachtungen. Ch. V. In Mathematische 

Grundlagen der Quantenmechanik. Berlin: Springer Verlag.  

Wiesner, S. 1983. Conjugate Coding. Sigact News 15: 78. 

———. 1996. Simulations of Many-Body Quantum Systems by a Quantum Computer. [Online]:

http://eprints.lanl.gov. (quant-ph/9603028).

Yao, A. 1993. Quantum Circuit Complexity. In Proceedings of the 34th Annual Symposium on Foundations

of Computer Science. p. 352. Los Alamitos, CA: IEEE Press.

Zalka, C. 1998. Simulating Quantum Systems on a Quantum Computer. Proc. R. Soc. London,

Ser. A 454: 313.

Glossary

Algorithm. A set of instructions to be executed by a computing device. What
instructions are available depends on the computing device. Typically, instructions 
include commands for manipulating the contents of memory and means for repeating
blocks of instructions indefinitely or until a desired condition is met.

Amplitude. A quantum system with a chosen orthonormal basis of “logical” states |i〉
can be in any superposition Σiαi |i〉 of these states, where Σi|αi|

2 = 1. In such a 
superposition, the complex  numbers αι are called the amplitudes. Note that the 
amplitudes depend on the chosen basis.

Ancillas. Helper systems used to assist in a computation involving other 
information systems.

Bell basis. For two qubits A and B, the Bell basis consists of the four states 
1/√2(|��〉AB ± |��〉AB) and 1/√2(|��〉AB ± |��〉AB).

Bell states. The members of the Bell basis. 
Bit. The basic unit of deterministic information. It is a system that can be in one of two
possible states, � and �.
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Bit sequence. A way of combining bits into a larger system whose constituent bits are 
in a specific order. 

Bit string. A sequence of �s and �s that represents a state of a bit sequence. Bit strings 
are the words of a binary alphabet. 

Black box. A computational operation whose implementation is unknown. Typically, a
black box implements one of a restricted set of operations, and the goal is to determine
which of these operations it implements by using it with different inputs. Each use of the
black box is called a “query.” The smallest number of queries required to determine the
operation is called the “query complexity” of the restricted set. Determining the query
complexity of sets of operations is an important area of computational complexity. 
Bloch sphere. The set of pure states of a qubit represented as points on the surface of 

the unit sphere in three dimensions.
Bra. A state expression of the form 〈ψ| considered to be the conjugate transpose of the 

ket expression |ψ〉.
Bra-ket notation. A way of denoting states and operators of quantum systems with kets 
(for example, |ψ〉) and bras (for example, 〈φ|).
Circuit. A combination of gates applied to information units in a prescribed order. 

To draw circuits, one often uses a convention for connecting and depicting gates. 
See also “network.”

Circuit complexity. The circuit complexity of an operation on a fixed number of 
information units is the smallest number of gates required to implement 
the operation. 

Classical information. The type of information based on bits and bit strings and more 
generally on words formed from finite alphabets. This is the information used for 
communication between people. Classical information can refer to deterministic or 
probabilistic information, depending on the context. 

Computation. The execution of the instructions provided by an algorithm. 
Computational states. See “logical states.”
Computer. A device that processes information.
Density matrix or operator. A representation of pure and mixed states without 

redundancy. For a pure state |ψ〉, the corresponding density operator is |ψ〉〈ψ|. 
A general density operator is a probabilistic combination Σiλi|ψi〉〈ψi|, with Σiλi = 1. 

Deterministic information. The type of information that is based on bits and bit strings.
Deterministic information is classical, but it explicitly excludes probabilistic 
information. 

Distinguishable states. In quantum mechanics, two states are considered 
distinguishable if they are orthogonal. In this case, a measurement exists that is 
guaranteed to determine which of the two states a system is in. 

Efficient computation. A computation is efficient if it requires, at most, polynomially 
many resources as a function of input size. For example, if the computation returns 
the value f(x) on input x, where x is a bit string, then it is efficient if there exists a 
power k such that the number of computational steps used to obtain f(x) is bounded 
by |x|2, where |x| is the length (number of bits) of x.

Entanglement. A nonclassical correlation between two quantum systems most strongly 
exhibited by the maximally entangled states, such as the Bell states for two qubits, and
considered to be absent in mixtures of product states (which are called separable 
states). Often, states that are not separable are considered to be entangled. However,
nearly separable states do not exhibit all the features of maximally entangled states. 
As a result, studies of different types of entanglement are an important component 
of quantum information theory. 

Gate. An operation applied to information for the purpose of information processing.
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Global phase. Two quantum states are indistinguishable if they differ only by a global 
phase. That is, |ψ〉 and eiφ|ψ〉 are in essence the same state. The global phase 
difference is the factor eiφ. The equivalence of the two states is apparent from the fact
that their density matrices are the same. 

Hilbert space. An n-dimensional Hilbert space consists of all complex n-dimensional 
vectors. A defining operation in a Hilbert space is the inner product. If the vectors are
thought of as column vectors, then the inner product 〈x, y〉 of x and y is obtained by 
forming the conjugate transpose x† of x and calculating 〈x, y〉 = x†y. The inner 
product induces the usual squared norm |x|2 = 〈x, x〉. 

Information. Something that can be recorded, communicated, and computed with. 
Information is fungible; that is, its meaning can be identified regardless of the 
particulars of the physical realization. Thus, information in one realization (such as 
ink on a sheet of paper) can be easily transferred to another (for example, spoken 
words). Types of information include deterministic, probabilistic, and quantum 
information. Each type is characterized by information units, which are abstract 
systems whose states represent the simplest information of each type. The 
information units define the “natural” representation of the information. For 
deterministic information, the information unit is the bit, whose states are symbolized
by � and �. Information units can be put together to form larger systems and can be 
processed with basic operations acting on few of them at a time. 

Inner product. The defining operation of a Hilbert space. In a finite dimensional 
Hilbert space with a chosen orthonormal basis {ei : 1 ≤ i ≤ n}, the inner product of 
two vectors x = Σixiei and y = Σiyiei is given by Σixiyi. In the standard column 
representation of the two vectors, this is the number obtained by computing the 
product of the conjugate transpose of x with y. For real vectors, that product agrees 
with the usual “dot” product. The inner product of x and y is often written in the form
〈x, y〉. Pure quantum states are unit vectors in a Hilbert space. If |φ〉 and |ψ〉 are two 
quantum states expressed in the ket-bra notation, their inner product is given by 
(|φ〉)†〈ψ| = 〈φ|ψ〉. 

Ket. A state expression of the form |ψ〉 representing a quantum state. Usually, |ψ〉 is 
thought of as a superposition of members of a logical state basis |i〉. One way to think
about the notation is to consider the two symbols | and 〉 as delimiters denoting a 
quantum system and ψ as a symbol representing a state in a standard Hilbert space. 
The combination |ψ〉 is the state of the quantum system associated with ψ in the 
standard Hilbert space via a fixed isomorphism. In other words, one can think of 
ψ ↔ |ψ〉 as an identification of the quantum system’s state space with the standard 
Hilbert space. 

Linear extension of an operator. The unique linear operator that implements a map 
defined on a basis. Typically, we define an operator U on a quantum system only 
on the logical states U : |i〉 → |ψi〉. The linear extension is defined by U(Σiαi|i〉) = Σiαi|ψi〉. 

Logical states. For quantum systems used in information processing, the logical states 
are a fixed orthonormal basis of pure states. By convention, the logical basis for 
qubits consists of |�〉 and |�〉. For larger dimensional quantum systems, the logical 
basis is often indexed by integers, |0〉, |1〉, |2〉, and so on. The logical basis is often 
called the computational basis, or sometimes, the classical basis. 

Measurement. The process used to extract classical information from a quantum 
system. A general projective measurement is defined by a set of projectors Pi,
satisfying ΣiPi = 11  and PiPj = δijPi. Given the quantum state |ψ〉, the outcome of a 
measurement with the set {Pi}i, is one of the classical indices i associated with a 
projector Pi. The index i is the measurement outcome. The probability of outcome i
is pi = |Pi|ψi〉|

2, and given outcome i, the quantum state “collapses” to Pi|ψi〉/√pi. 
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Mixture. A probabilistic combination of the pure states of a quantum system. Mixtures 
can be represented without redundancy with density operators. Thus, a mixture is of 
the form Σiλi|ψi〉〈ψi|, with λi ≥ 0 and Σiλi = 1 being the probabilities of the states 
|ψi〉. This expression for mixtures defines the set of density operators, which can 
also be characterized as the set of operators ρ satisfying tr(ρ) = 1 and for all 
|ψ〉, 〈ψ|ρ|ψ〉 ≥ 0 (“positive semidefinite operator”). 

Network. In the context of information processing, a network is a sequence of gates 
applied to specified information units. Networks can be visualized as displaying 
horizontal lines that denote the timeline of an information unit. The gates are 
represented by graphical elements that intercept the lines at specific points. A 
realization of the network requires applying the gates to the information units in 
the specified order (left to right). 

Operator. A function that transforms the states of a system. Operators may be restricted
depending on the system’s properties. For example, in talking about operators acting 
on quantum systems, one always assumes that they are linear. 

Oracle. An information processing operation that can be applied. A use of the oracle is 
called a query. In the oracle model of computation, a standard model is extended to 
include the ability to query an oracle. Each oracle query is assumed to take one time 
unit. Queries can reduce the resources required for solving problems. Usually, the oracle 
implements a function or solves a problem not efficiently implementable by the model 
without the oracle. Oracle models are used to compare the power of two models of 
computation when the oracle can be defined for both models. In 1994, for example,
Dan Simon showed that quantum computers with a specific oracle O could efficiently 
solve a problem that had no efficient solution on classical computers with access to the 
classical version of O. At the time, this result was considered the strongest evidence for 
an exponential gap in power between classical and quantum computers. 

Overlap. The inner product between two quantum states.
Pauli operators. The Hermitian matrices σx, σy, and σz acting on qubits, which are 

two-level quantum systems. They are defined in Equation (12). It is often convenient 
to consider the identity operator to be included in the set of Pauli operators. 

Polynomial resources. To say that an algorithm computing the function f(x), where x is 
a bit string, uses polynomial resources (in other words, is efficient) means that the 
number of steps required to compute f(x) is bounded by |x|k for some fixed k. Here,
|x| denotes the length of the bit string x. 

Probabilistic bit. The basic unit of probabilistic information whose state space consists 
of all probability distributions over the two states of a bit. The states can be thought 
of as describing the outcome of a biased coin flip before the coin is flipped. 

Probabilistic information. The type of information obtained by extending the state 
spaces of deterministic information to allow arbitrary probability distributions over 
the deterministic states. This is the main type of classical information with which 
quantum information is compared. 

Probability amplitude. The squared norm of an amplitude with respect to a chosen 
orthonormal basis {|i〉}. Thus, the probability amplitude is the probability with which 
the state |i〉 is measured in a complete measurement that uses this basis. 

Product state. For two quantum systems A and B, product states are of the form 
|ψ〉Α|φ〉Β. Most states are not of this form. 

Program. An algorithm expressed in a language that can be understood by a particular 
type of computer. 

Projection operator. A linear operator P on a Hilbert space that satisfies P2 = P†P = P. 
The projection onto a subspace V with orthogonal complement W is defined as 
follows: If x ∈ V and y ∈ W, then P(x + y) = x. 
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Pseudocode. A semiformal computer language intended to be executed by a standard 
random-access machine, which is a machine model with a central processing unit 
and access to a numerically indexed unbounded memory. This machine model is 
representative of the typical one-processor computer. Pseudocode is similar to 
programming languages such as BASIC, Pascal, or C but does not have specialized 
instructions for human interfaces, file management, or other “external” devices. Its 
main use is to describe algorithms and enable machine-independent analysis of the 
algorithms’ resource usage. 

Pure state. A state of a quantum system that corresponds to a unit vector in the Hilbert 
space used to represent the system’s state space. In the ket notation, pure states are 
written in the form |ψ〉 = Σiαi|i〉, where the |i〉 form a logical basis and Σi|αi|

2 = 1. 
Quantum information. The type of information obtained when the state space of 

deterministic information is extended by normalized superpositions of deterministic 
states. Formally, each deterministic state is identified with one of an orthonormal basis 
vector in a Hilbert space, and normalized superpositions are unit-length vectors 
expressible as complex linear sums of the chosen basis vectors. It is convenient to 
extend this state space further by permitting probability distributions over the quantum 
states (see the entry for “mixtures”). This extension is still called quantum information. 

Qubit. The basic unit of quantum information. It is the quantum extension of the 
deterministic bit, which implies that its state space consists of the unit-length vectors 
in a two-dimensional Hilbert space. 

Readout. A method for obtaining human-readable information from the state of a 
computer. For quantum computers, readout refers to a measurement process used to 
obtain classical information about a quantum system. 

Reversible gate. A gate whose action can be undone by a sequence of gates. 
Separable state. A mixture of product states. 
States. The set of states for a system characterizes the system’s behavior and 

possible configurations. 
Subspace. For a Hilbert space, a subspace is a linearly closed subset of the vector space.

The term can be used more generally for a system Q of any information type:
A subspace of Q or, more specifically, of the state space of Q is a subset of the state 
space that preserves the properties of the information type represented by Q. 

Superposition principle. One of the defining postulates of quantum mechanics 
according to which if states |1〉, |2〉, . . . are distinguishable, then Σiαi|i〉 with 
Σi|αi|

2 = 1 is a valid quantum state. Such a linear combination is called a normalized 
superposition of the states |i〉. 

System. An entity that can be in any of a specified number of states. An example is 
a desktop computer whose states are determined by the contents of its various 
memories and disks. Another example is a qubit, which can be thought of as a 
particle whose state space is identified with complex, two-dimensional, length-one 
vectors. Here, a system is always associated with a type of information that 
determines the properties of the state space. For example, for quantum information,
the state space is a Hilbert space. For deterministic information, it is a finite set 
called an alphabet. 

Unitary operator. A linear operator U on a Hilbert space that preserves the inner 
product. That is, 〈Ux, Uy〉 = 〈x, y〉. If U is given in matrix form, then this expression 
is equivalent to U†U = 11. 

Universal set of gates. A set of gates that satisfies the requirement that every 
allowed operation on information units can be implemented by a network of these 
gates. For quantum information, it means a set of gates that can be used to implement
every unitary operator. More generally, a set of gates is considered universal if, for 
every operator U, there are implementable operators V arbitrarily close to U.
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The publication of Shor’s quantum algorithm for efficiently factoring numbers
(1994 and 1997) was the key event that stimulated many theoretical and experi-
mental investigations of quantum computation. One of the reasons why this 

algorithm is so important is that the security of widely used public-key cryptographic
protocols relies on the conjectured difficulty of factoring large numbers. An elementary
overview of these protocols and the quantum algorithm for breaking them is provided in
Artur Ekert (1998).1 Here, we outline the relationship between factoring and the power-
ful technique of phase estimation. This relationship helps in understanding many of the
existing quantum algorithms and was first explained in Richard Cleve et al. (1998). This
explanation was motivated by Alexei Kitaev’s version (1995) of the factoring algorithm. 

The factoring problem requires writing a whole number N as a product of primes.
(Primes are whole numbers greater than 1 that are divisible without remainder only by 1
and themselves.) Shor’s algorithm solves this problem by reducing it to instances of the
order-finding problem, which will be defined below. The reduction is based on basic
number theory and involves efficient classical computation. At the core of Shor’s algo-
rithm is a quantum algorithm that solves the order-finding problem efficiently. In this
case, an algorithm is considered efficient if it uses resources bounded by a polynomial
in the number of digits of N. For more information on the requisite number theory, see
any textbook on number theory (Bolker 1970, Hardy and Wright 1979). 

We begin by showing that factoring reduces to order finding. The first observation is
that, to factor a whole number, it is sufficient to solve the factor-finding problem, whose
statement is, “Given a whole number N, find a proper factor of N if one exists. A factor
of N is a whole number f that satisfies N = fg for some whole number g. The factor f is
proper if f ≠ 1 and f ≠ N. For example, if N = 15, then 3 and 5 are its proper factors. For
some numbers, it is easy to find proper factors. For example, you can tell that N is even
from the least significant digit (in decimal or binary), in which case, 2 is a proper factor
(unless N = 2, a prime). But many numbers are not so easy. As an example, you can try
to find a factor of N = 149,573 by hand.2 You can complete the factorization of a whole
number by recursively applying an algorithm for the factor-finding problem to all the
proper factors found. 

Before we continue the reduction of factoring to order finding, we will briefly
explain modular arithmetic, which both simplifies the discussion and is necessary to
avoid computing with numbers that have exponential numbers of digits. We say that a
and b are equal modulo N, written as a = b mod N, if a – b is divisible by N (without
remainder). For example, 3 = 18 mod 15 = 33 mod 15. Equality modulo N is well
behaved with respect to addition and multiplication. That is, if a = b mod N and c = d
mod N, then a + c = b + d mod N, and ac = bd mod N. For factoring N, we will be look-
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149,573= 373 ∗4012

1All the citations in this article have been referenced on pages 31 to 33 of the main article,
“Quantum Information Processing.”



ing for whole numbers a that are divisible by a proper factor of N. If a has this property,
then so does any b with b = a mod N. We therefore perform all arithmetic modulo N.
One way to think of all this is that we use only whole numbers a that satisfy 
0 ≤ a ≤ N – 1. We can implement each arithmetic operation modulo N by applying 
the operation in the usual way and then computing the remainder after division by N.
For example, to obtain ab mod N, we first compute ab. The unique c such that 
0 ≤ c ≤ N – 1 and c = ab mod N is the remainder after division of ab by N. Thus,
c is the result of multiplying a by b modulo N. Consistent with this procedure, we can
think of the expression a mod N as referring to the remainder of a after division by N. 

The second observation in the reduction of factoring to order finding is that it is suffi-
cient to find a whole number r with the property that r2 – 1 is a multiple of N, but r – 1
and r + 1 are not. Using the language of modular arithmetic, the property is expressed as
r2 = 1 mod N, but r ≠ 1 mod N and r ≠ –1 mod N. Because 1 mod N and –1 mod N are the
obvious square roots of 1 mod N, we say that r is a nontrivial square root of unity
(modulo N). For such an r, one can write r2 – 1 = (r – 1)(r + 1) = mN for some whole
number m. This implies that every prime factor p of N divides either (r – 1) or (r + 1) so
that either (r – 1) or (r + 1) is or shares a factor with N. Suppose that r – 1 is or shares
such a factor. Because r – 1 is not a multiple of N, the greatest common divisor of r – 1
and N is a factor of N. Since an efficient classical algorithm (the Euclidean algorithm)
exists for finding the greatest common divisor, we can easily find the desired proper factor. 

The examples of N = 15 and N = 21 serve to illustrate the key features of the 
algorithm. For N = 15, possible choices for r are r = 4 (42 – 1 = 1 ∗ 15), and 
r = 11 (112 – 1 = 120 = 8 ∗ 15). For the first choice, the proper factors emerge immedi-
ately: 4 – 1 = 3, and 4 + 1 = 5. For the second, it is necessary to determine the greatest
common divisors (or gcd). Let gcd(x, y) stand for the greatest common divisor of x and
y. The proper factors are gcd(11 – 1, 15) = gcd(10, 15) = 5, and gcd(11 + 1, 15) =
gcd(12, 15) = 3. For N = 21, one can take r = 8 as 82 – 1 = 63 = 3 ∗ 21. In this case,
8 – 1 = 7 is a proper factor, and gcd(8 + 1, 21) = 3 is another. 

For N even or a power of a prime, it is not always possible to find a nontrivial square
root of unity. Because both cases can be handled efficiently by known classical algo-
rithms, we can exclude them. In every other case, such numbers r exist. One way to find
such an r is to start from any whole number q, with 1 < q < N. If gcd(q, N) = 1, then
according to a basic result in number theory, there is a smallest whole number k > 1
such that qk – 1 = 0 mod N. The number k is called the order of q modulo N. If k is
even, say, k = 2l, then (ql)2 = 1 mod N, so ql is a (possibly trivial) square root of unity.
For the example of N = 15, we can try q = 2. The order of 2 modulo 15 is 4, which gives
r = 22 = 4, the first of the two choices in the previous paragraph. For N = 21, again with
q = 2, the order is 6: 26 – 1 = 63 = 3 ∗ 21. Thus, r = 23 = 8. We can also try q = 11, in
which case, with foresight, it turns out that 116 – 1 is divisible by 21. A possible prob-
lem appears, namely, the powers qk, which we want to compute, are extremely large.
But modular arithmetic can help us avoid this problem. For example, to find the order of
11 modulo 21 by direct search, we can perform the following computation: In general,
such a direct search for the order of q modulo N is very inefficient, but as we will see,
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there is an efficient quantum algorithm that can determine the order. 

A factor-finding algorithm based on the above observations is the following:

FACTORFIND(N) 

Input: A positive, nonprime whole number N

Output: A proper factor f of N, that is, f is a whole number such that 1 < f < N and 
N = fg for some whole number g. 

1. If N is even, return f = 2.

2. If N = pk for p prime, return p.

3. Randomly pick 1 < q < N – 1.

a. If f = gcd(q, N) > 1, return f.

4. Determine the order k of q modulo N using the quantum order-finding algorithm. 

a. If k is not even, repeat at step 3.

5. Write k = 2l and determine r = ql mod N with l < r < N. 

a. If 1 < f = gcd(r – 1, N) < N, return f. 

b. If 1 < f = gcd(r + 1, N) < N, return f.

c. If we failed to find a proper factor, repeat at step 3. 

The efficiency of this algorithm depends on the probability that a randomly chosen q
at step 3 results in finding a factor. An analysis of the group of numbers q that satisfy
gcd(q, N) = 1 shows that this probability is sufficiently large. 

The main problem left to be solved is finding the order of q mod N. A direct search
for the order of q mod N involves computing the sequence

1 → q → q2 mod N → . . . → qk–1 mod N → 1 = qk mod N . (2)

This sequence can be conveniently visualized as a cycle whose length is the order q mod N
(refer to Figure 1). 

To introduce the quantum algorithm, we first associate the logical quantum states |0〉,
|1〉, . . . |N – 1〉 with the numbers 0, 1,. . . , N – 1. The map f that takes each number on
the cycle to the next number along the cycle is given by f(x) = qx mod N. For q
satisfying gcd(q, N) = 1, the map f permutes not only the numbers on the cycle but 
all the numbers modulo N. As a result, the linear operator  f̂ defined by  f̂ |x〉 = |f(x)〉 = 
|qx mod N〉 is unitary. The quantum algorithm deduces the length of the cycle for q by
making measurements to determine the properties of the action of  f̂ on superpositions of
the states |qs mod N〉. To illustrate the basic ideas, we work out the example of N = 15
and q = 8. The action of  f̂ on the states |1〉, |8〉, |4〉, and |2〉 in the cycle of 8 mod 15 is
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completely determined by the eigenstates and eigenvalues of  f̂ . For cyclicly acting per-
mutations, a basis of eigenstates is given by the Fourier basis for the space spanned by
the states in a cycle. For the cycle of interest, the Fourier basis consists of the states

(3)

The phases of the lth state of the cycle occurring in the sum for |ψm〉 can be written as
ilm. It follows that f̂ |ψm〉 = im|ψm〉, that is, the eigenvalue of  f̂ for |ψm〉 is im. Note that,
in complex numbers, the powers of i are all the fourth roots of unity. In general,
the Fourier basis for the cycle . . . → |ql mod N〉 → . . . consists of the states 
|ψm〉 = Σlωlm|ql mod N〉, where ω = ei2π /k is a primitive kth root of unity. (The com-
plex number x is a primitive kth root of unity if k is the smallest whole number k > 0
such that xk = 1. For example, both –1 and i are fourth roots of unity, but only i is primi-
tive.) 

It is, of course, possible to express the logical state |1〉 using the Fourier basis

(4)

The key step of the quantum algorithm for order finding consists of a measurement to
estimate a random eigenvalue of  f̂ , whose associated eigenstate occurs in the expression
for |1〉 in terms of the Fourier basis. If the eigenvalue found is a kth root of unity, we
infer that the cycle length is divisible by k and check (using a classical algorithm)
whether this is the order of q. In the example, the random eigenvalues are 1 (the only
primitive first root of unity), i and –i (primitive fourth roots of unity), and –1 (the primi-
tive second root of unity). The order is found if the random eigenvalue is a fourth root of
unity, which happens with probability 1/2 in this case. 
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qqk–1 mod N

q2 mod N

. . .

qk–2 mod N

Figure 1. Multiplicative
Cycles of q mod N
Each number on a cycle is

obtained from the previous one

by multiplication by q mod N.



The quantum algorithm for obtaining an eigenvalue is called the phase estimation
algorithm, and it exploits a more general version of the phase kickback we encountered
in the solution of the parity problem. The phase kickback transfers the eigenvalue of 
an eigenstate of f̂  to a Fourier basis on a number of additional qubits called helper or 
ancilla qubits. Which Fourier state results is then determined by a subroutine called 
the measured quantum Fourier transform. We introduce these elements in the next 
paragraphs. Their combination for solving the general order-finding problem is 
illustrated on page 45. 

Figure 2 shows how to kick back the eigenvalue of an eigenstate of f̂ using a network
implementing the controlled-f̂ operation. The network in Figure 2 can be used with input
|1〉 on the second system. From Equation (4) and the superposition principle, it follows
that the output correlates the different phase kickback states with the four eigenvectors
|ψm〉. That is, the network implements the following transformation:

(5)

The hope is that a measurement of the first qubit can distinguish between the four possi-
ble phases that can be kicked back. However, because the four states are not mutually
orthogonal, they are not unambiguously distinguishable by a measurement. To solve this
problem, we use a second qubit and a controlled-f̂ 2 as shown in Figure 3.

The four possible states |um〉 that appear on the ancilla qubits in the network of
Figure 3 are the Fourier basis for the cycle 0 → 1 → 2 → 3 → 0 and are therefore
orthonormal. If we apply the network of Figure 3 with |1〉 instead of |ψm〉 at the lower
input, the output correlates the four |ψm〉 in the superposition with the |um〉, which makes
the information about the eigenvalues of  f̂ available in the Fourier basis of the two ancil-
la qubits. This approach has the advantage that the states are known, whereas in the
Fourier basis for the cycle of q mod N, the states depend on the numbers in the cycle,
which are not known in advance (except in very simple cases, such as the example we
are working with). 

To learn one of the eigenvalues of  f̂ , the last step is to make a measurement in 
the Fourier basis. For one qubit representing the binary numbers 0 and 1, the Fourier
basis is 1/√2(|0〉 + |1〉) and 1/√2(|0〉 – |1〉), which is constructed as discussed after
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ψm
ψmf̂

Figure 2. Phase
Estimation with One Qubit
The input is a product state
on one ancilla qubit and on a
second quantum system, as
shown. The state |ψm〉 on the
second system is an eigen-
state of f̂. For the example
provided in Equation (3), the
eigenvalue is im. A controlled-
f̂ operation is applied to the
input, that is, f̂ is applied to
the second system condition-
al on |��〉 for the ancilla qubit.
In the bra-ket notation, the
total operation can be written
as |��〉〈��| + |��〉〈��|f̂ (system labels
have been omitted). Because
f̂ changes only the phase of
its input, the second system
is unchanged, but the phase
modifies the ancilla qubit’s
superposition as shown.



Equation (3) but using the square root of unity ω = –1 instead of the fourth root i. 
To make a measurement that determines which of the two basis vectors is present, it 
suffices to apply the Hadamard transform H and make a standard measurement, just 
as we did twice in the network of Figure 2 in the article “Quantum Information
Processing” on page 23. A more complicated network works with two qubits represent-
ing the binary numbers from 0 to 3. Such a network is shown in Figure 4.

To see how the network extracts the bits in the index of |ua〉, we can follow the states
as the network is executed. The input state at checkpoint 1 in Figure 4 is given by

(6)

In the last sum, the relevant numbers have been fully expanded in terms of their binary
digits to give a flavor of the general principles underlying the measured Fourier trans-
form. The next step of the network applies a Hadamard gate to the qubit carrying the
most significant digit. To understand how it succeeds in extracting a0, the least signifi-
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Figure 3. Phase
Estimation with Two
Qubits
Using two qubits ensures dis-
tinguishability of the eigenval-
ues of f̂ for the states |ψm〉. The
states of the input qubits are
used to represent the numbers
from 0 to 3 in binary. The most
significant bit (the two’s digit
in binary representation) is
carried by the top qubit. That
is, we make the following iden-
tification: |0〉 = |����〉, |1〉 = |����〉, |2〉
= |����〉, and |3〉 = |����〉. It follows
that the network has the effect
of applying f̂ m conditional on
the input qubits’ logical state
being |m〉.

Z–i H

Z a0

a1

H

Checkpoints:  1 2 3 4

u a a2 1 0∗ +










Figure 4. Measured
Quantum Fourier
Transform on Two Qubits
The two qubits represent the
numbers 0, 1, 2, and 3 . If the
input is one of the Fourier
states |ua〉, where the binary
digits of a are determined by 
a = 2 * a1 + a0, then the meas-
urement outcomes are a0 and
a1, as shown. The numbers
under the network are check-
points used for analysis.
[For details on the measured
Fourier transform, see Griffiths
and Niu (1996).]
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cant bit of a, let b with binary digits b0 and b1 represent one of the logical states of the
two qubits. As before, the most significant bit b1 is represented by the top/first qubit that 
the first Hadamard gate is applied to. The phase of |b〉 in Equation (6) is given by
i(b1∗21+b0∗20)(a1∗21+a0∗20). Next, we determine how the phase depends on b1:

(7)

It follows that, if a0 = 0, the phase does not depend on b1, and if a0 = 1, it changes sign
with b1. This sign change can be detected by performing the Hadamard transform and
measuring, as can be seen explicitly by computing the state after the Hadamard trans-
form at checkpoint 2:

(8)

The phases still show a dependence on a0 via the terms ib0∗20∗a0∗20
= ib0a0. The purpose

of the phase-shift gate conditioned on the measurement outcome is to remove that
dependence. The result is the following state on the remaining qubit at checkpoint 3:

(9)

The final Hadamard transform followed by a measurement therefore results in the bit a1,
as desired. 

The elements that we used to determine the order of 8 modulo 15 can be combined
and generalized to determine the order of any q modulo N with gcd(q, N) = 1. The gen-
eral network is shown in Figure 5. Two features of the generalization are not apparent
from the example. First, in order for the quantum network to be efficient, an efficient
implementation of the controlled f̂ 2l operation is required. To obtain such an implemen-
tation, first note that to calculate f2l (x) = q2l x mod N, it suffices to square q repeatedly 
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modulo N using (q2m)2 mod N = q2m+l mod N until we obtain q2l mod N. The result is
then multiplied by x mod N. This computation is efficient. For any given q, the 
computation can be converted to an efficient network consisting of Toffoli gates 
and controlled-not gates acting on the binary representation of x. The conversion can 
be accomplished with standard techniques from the theory of reversible classical 
computation. The result is an efficient network for ^f 2l. Basic network theory can then be
used to implement the controlled version of this operation (Barenco et al. 1995). 

To understand the second feature, note that we were lucky to anticipate that the order
of 8 modulo 15 was a power of 2, which nicely matched the measured Fourier transform
we constructed on two qubits. The measured Fourier transform on m ancilla qubits can
detect exactly only eigenvalues that are powers of the 2mth root of unity eiπ/2m–1. The
phase kicked back by the controlled operations corresponds to a kth root of unity. Given
a Fourier state on the cycle of q mod N, the resulting state on the ancilla qubits has
phases that go as powers of a kth root of unity. Fortunately, the ancilla’s Fourier basis is
such that the measured Fourier transform picks up primarily those basis states whose
generating phase is close to the kickback phase. Thus, we are likely to detect a nearby 
ω = eilπ/2m–1. It is still necessary to infer (a divisor of) k from knowledge of such an ω.
Because we know that the order k is bounded by N, the number of possible phases
kicked back that are near the measured ω is limited. To ensure that there is only one
possible such phase, it is necessary to choose m such that 2m > N2. (See also Figure 5.) �
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The number m of qubits used for the phase kickback has to
be chosen such that m > 2 * log2(ku), where ku is a known
upper bound on the order k of q mod N. Because N > k, one
can set m = 2 log2(N), where x is the least whole number
s ≥ x. There is an eigenvalue λl = ei2lπ/k of one of the
Fourier eigenvectors associated with the cycle of 
q mod N such that the number a, whose binary digits are
the measurement outcomes, satisfies eiπa/2m–1 ≈ ei2π l /k.
More precisely, with probability above .405, there exists l
such that |a/2m – l/k | ≤ 1/2m+1 (Cleve et al. 1998). Because
any two distinct rational numbers with denominator at most
ku differ by at least 1/k2

u > 2/2m+1, the theory of rational

approximations guarantees that we can uniquely determine
the number l/k. There is an efficient classical algorithm
based on continued fractions that computes r and s with 
r/s = l/k and s = k/gcd(l, k). The probability that gcd(l, k) = 1
is at least 1/ (log2(k) + 1), in which case we learn that 
s = k and this is the order of q mod N. Note that the com-
plexity of the network depends on the complexity of 
implementing the controlled f̂ 2l operations. Because these
operations can be implemented efficiently, the network 
and hence the determination of the order of q mod N are
efficient in the sense that, on average, polynomial resources
in log2(N) suffice.

Figure 5. Network for Quantum Order Finding and Phase Estimation 



How can quantum computers do the amazing things that they are able to do, such
as factoring large numbers and finding discrete logarithms? What makes them
so different from classical computers? These questions are often asked, and they

have proved to be surprisingly difficult to answer—at least to the satisfaction of every-
one! In this short article, I’ll try to address these questions by comparing the operation
of a quantum computer with playing the game of 20 questions. But first, let’s consider an
unusual perspective on computers in general. 

What Is a Computer?

Well, a computer is really just some physical machine that you prepare in a certain
way, manipulate in certain ways, and then watch to observe the results it displays. That
is how physicists might describe the entire physical process that mathematicians call a
computation. This view seems a bit strange at first because we have become accustomed
to the more abstract view of the computer scientist, who sees a computation as a certain
type of process that acts on an input in order to produce an output. But our physical
description is not really so different. It just emphasizes the physical nature of the com-
putation, something that falls by the wayside in the abstracted view. The initial prepara-
tion is what a computer scientist calls an input, the actual computation is the physical
manipulation, and the observation at the end results in getting the output. So, whereas a
computation can be viewed abstractly as a process, its physical nature can also be
emphasized. This view will help us make the transition to understanding what a quan-
tum machine is doing in a special way. Unlike classical computers, which are physical
devices manipulated according to the laws of classical physics, quantum computers are
physical devices manipulated according to the laws of quantum physics. 
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Quantum Computers and the 20 Questions Game

Having understood that a computation is ultimately a physical process, let’s go on 
to see how using a quantum machine is much like playing the game of 20 questions.
Twenty questions is played as follows. I think of a number between 1 and 220. You try
to guess my secret number by asking questions such as, “Is your secret number less
than 2378?” If you ask your questions well, you can guess my secret number in, at the
most, 20 questions. Why? Well, with each question, you can eliminate half of the
remaining candidates. Computer scientists call this process binary search, and it allows
you to find a secret number less than 2n in log 2n = n questions at the most. The key
idea is that, by cutting the number of possibilities in half with each question, you are
left with one possibility after only n questions. This principle generalizes. For example,
if you are searching for a secret item among N possibilities and with each question 
you are able to eliminate a fraction 1 – 1/c of the possibilities, then you can find the
secret in logcN questions. In general, you might not be looking for a number. You
might be looking for a secret element x in a set S called a search space. The key to
quick success is still to be able to eliminate a constant fraction of the remaining 
candidates. Now, let’s consider a slightly different version of this game, which we call
“random 20 questions.” 

In playing random 20 questions, you don’t get to choose your question. Instead, you
randomly select a subset Q (used for the word “question”) consisting of half of the
N elements in the search space, and you ask, “Is the secret element in Q?” After I give
you the honest answer, you choose a new random subset Q and ask again. Surprisingly,
again after only about log N questions, you will almost surely have narrowed the possi-
bilities down to the one correct answer. We say “almost surely” because there is a tiny,
tiny chance that you will get unlucky and never be able to eliminate one of the elements
that is not the secret element. This tiny chance is the result of each question having been
selected randomly rather than deterministically, which is the case when playing the 
original 20 questions game. After 2 log N questions, for example, that possibility is
incredibly small. So, even by asking random questions, you can discover the secret ele-
ment quickly. The reason is that, as in the original 20 questions game, you are able to
eliminate each incorrect element as a possibility. Although in the random 20 questions
game this process of elimination is only very highly probable, it is so close to being 
certain that, for all practical purposes, we won’t worry about it. Now, let’s talk about
playing quantum 20 questions. 

In this game, I choose a secret quantum state ρ1 from a search space of quantum
states S = {ρ1, ρ2…, ρΝ}, and I supply a copy of the secret state whenever you request
one. Your task is to discover my secret quantum state by asking quantum questions, that
is, by doing measurements on each requested quantum state and thus getting informa-
tion about the state. Now, let’s back up a bit and clarify these terms. What is a quantum
state? A pure state ψ is simply a vector in a Hilbert space. A mixed state, or more 
simply a state, is a convex combination of pure states ψi, that is, a classical probabilistic
mixture of pure states: 

(1)
ρ ψ ψ=  =∑ ∑p pi

i
i i i

i

, .where 1
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Quantum Questions

What is a quantum question? A quantum question is typically called an observable.
We’ll think of a quantum question as simply an orthonormal basis. The answer to a
quantum question will be one of the basis vectors. So, suppose the secret quantum state
is a pure state |ϕ〉 and the quantum question is {|φ1〉, |φ2〉,…, |φΜ〉}, a basis of the
M-dimensional Hilbert space. According to the basic rules of quantum mechanics, we
get the answer |φ〉 with probability |〈φ |ϕ〉| 2. If we have a mixed state instead of a pure
state, the probability formula is extended by convexity, as usual. How many quantum
questions does it take to guess the secret quantum state? That depends on lots of things.
It depends on what quantum questions you are allowed to ask me. And it also depends
on how different the states in S are from each other. In this context, the word “different”
means how distinguishable the states are from each other. For example, two orthogonal
pure states are as different as two states can be. Two very nearly parallel pure states are
almost indistinguishable in that it takes many experiments and questions to tell them
apart based on the outcome statistics. The standard measure of similarity between two
pure states is simply their overlap 〈φ |ϕ〉. There are measures for the similarity or over-
lap of mixed states as well, but we won’t need the formula. We just need to know that 
to tell apart two similar states requires many experiments whereas to tell apart two very
different states requires few experiments. 

So, going back to quantum 20 questions, let’s assume you can ask any quantum
question you want; that is, you can choose any orthonormal basis as the observable. If
all the states in S are sufficiently different from each other, you can find my secret state
after only a few questions. Usually, when we use the word “few” in this context, we
mean log |S| or log2|S| or something like that. (A computer scientist would say that few
means a polynomial function of the logarithm of the size of the search space.) The key
to a fast search is that all the states must be quite different from each other. 

It turns out that playing search games is much like trying to break codes. If you 
try to break a code, you want to look for a cryptographic key. The key is what allows 
you to decipher the code and read the message. One popular code is the RSA. Named
after its inventors—Ronald Rivest, Adi Shamir, and Leonard Adleman—the RSA uses 
as its key the secret factors of a large number N. Now, suppose you are trying to break 
a code by finding a secret key k from among a very large set of possible keys 
K = {k1, k2…, kΜ}. Further suppose that, by some process and without knowing the key,
you can prepare a quantum state ρ corresponding to the key k. So, you now have a state
ρ, which you know comes from the search space S = {ρ1,…, ρM}, which is the set of
states corresponding to all the possible secret keys, but you don’t know exactly which of
the states you have. If the states of S are all sufficiently different, then you can ask quan-
tum questions to determine the secret state efficiently. And if you can find the secret state,
then you can easily figure out the original secret key corresponding to that secret state! 

Indeed, this is precisely how quantum computers would solve various classical cryp-
tographic problems, such as factoring and finding discrete logarithms. A factoring prob-
lem is one in which you are given a very large number N (say, one with 2000 digits),
which is the product of two primes N = pq, and your task is to find p and q. For the dis-
crete logarithm problem, you are given a large prime number p (say, once again, one
with 2000 digits) and two numbers a and b less than p. Your task is to find n such that
an = b (mod p). In both cases, you are looking for a secret key k from among a known
set of possible secret keys. Also, in both cases there is a process by which you can pre-
pare a quantum state from which k can be deduced. Significantly, this preparation
process does not require knowing k.

This last point is important because, if you had to know the key first, then the code-
breaking machine would not be very useful. We will later illustrate this process in an

Playing search games 
is much like trying to
break codes. If you try 
to break a code, you 
want to look for a 
cryptographic key. 
To solve classical 
cyptographic problems
with quantum computers,
you are looking for a
secret key from among 
a known set of possible
secret keys.



example (see the section “Simon’s Problem”). Finally, this process has the special and
important quality that, for two different keys, k1 and k2, the resulting quantum states, ρ1 and
ρ2, are quite different, or clearly distinguishable from one another, as discussed before. We
can therefore ask quantum questions, which allow us to distinguish among states and iden-
tify secret keys. This ability to distinguish among the states is usually accomplished by
eliminating the possibility of a constant fraction, say 1/2, of the remaining states. As we
saw in the game of 20 questions, eliminating a constant fraction after each question allows
us to narrow the possible states down to the one true state in only log N questions.
However, since the quantum formula gives probabilities for certain outcomes, we eliminate
the false states with high probability (not with certainty), as in the game of random
20 questions. 

Identifying Secret Quantum States

Let us fill in some of the technical details of our sketch. First, can we really ask any
quantum question? No, we can’t, but fortunately we are able to ask the questions that let us
solve factoring and discrete logarithm problems. Recalling our observation that a computa-
tion is actually a physical process, we must be sure to carry out efficiently the physical
process corresponding to the quantum question we wish to ask. We accomplish this task by
breaking down the observable into elementary quantum “gates.” Elementary quantum gates
are analogous to the basic logical gates and, or, and not, which are the building blocks of
circuits in classical computers (for more details, see Shor 1997). In the case of factoring 
and discrete logarithm problems, it turns out that we have to ask only one quantum question
over and over again in order to obtain enough information for identifying the secret 
quantum state. Called the quantum Fourier transform, this quantum question allows us to
distinguish among the states that arise in the two search spaces for the factoring and discrete
logarithm problems. These states are called hidden subgroup states because, in those 
problems, the key we are looking for corresponds to an unknown subgroup H of a finite
abelian group G. The search space corresponds to the set {ρΗ1

, ρH2
,. . . ρHi

}, where H1 to Hi

is a range over all the possible subgroups of G, and ρH is the mixed state that corresponds 
to a uniform mixture of the pure coset states

(2)

It can be shown that for H1 and H2 , two different subgroups, the corresponding states
ρΗ1

and ρH2
are sufficiently different. Mathematically speaking, the overlap of ρΗ1

and
ρH2

is less than 1/2 (Ettinger et al. 1999). For a discussion of the hidden subgroup prob-
lem and the reasons why the quantum Fourier transform is the right quantum question,
see Ettinger and Peter Hoyer (1999). 

Simon’s Problem

To illustrate everything we have discussed, let’s consider a concrete example known
as Simon’s problem. Simon’s problem and the quantum algorithm to solve it contain the
essence of what is going on in the factoring and discrete logarithm problems; the latter
set of problems, however, also contains a number of technical twists that obscure the
main ideas. The set of all bit strings of length n, denoted Z2

n, is a commutative group if

c
H

c
h H

+ = +
∈
∑Η

1
h  .
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we add bit strings using “binary add without carry.” This group will be our search space.
I will secretly choose an element s of this group and provide you with a function in the
form of a “black box,” fs on Z2

n, with the following special property: I guarantee that
fs(x) = fs(y) if and only if x – y = s. So, the function fs encodes the secret bit string s.
Because f depends entirely on s, the latter becomes a subscript on f. If you compute the
function on the elements of the group fs(a), fs(b), fs(c)…, eventually you’ll get a colli-
sion, which means that you’ll find fs(g) = fs(t) and then you’ll know that the secret bit
string is s = g – t. But notice that the search space, or the group, has 2n elements, which
is a very large number. In the worst case, it could take you 2n–1 + 1 calculations to get a
collision, and on average it will take about 2n/2 because of the so-called birthday para-
dox.1 That is still a lot of time! But the quantum algorithm can solve this problem much
more quickly—in about n tries only. 

Here is how Simon’s problem works: You start with a quantum computer whose 
qubits are conceptually divided into two registers. Then you prepare the pure state
|ψ〉 = 1/2n/2 ∑b|b〉, where b ∈ Z2

n. Thus, in the first register, there is a superposition of all
the bs. Now, because you have the black box function fs, you can compute fs(b) in the 
second register to obtain the pure state |ψs〉 = 1/2n/2 ∑b|b〉|fs(b)〉, where again b ∈ Z2

n. Notice
that this procedure for preparing the state ψs is easily accomplished without any knowledge
of the secret bit string s. Of course, for different secret bit strings, we obtain different states.
In fact, this is the key point. Our quantum algorithm is really just a method used to distin-
guish among these different states and thus discover the underlying secret bit string. 

We now observe, or perform a measurement, on the second register. Because of the
way quantum mechanics works, this observation collapses |ψs〉, producing a specific
value in the second register, say c, and the first register is left in a superposition of bit
strings that map to c under fs. Because fs has the special property described earlier, 
the bit strings that map to c will differ by the secret bit string s. Therefore, the state of
the computer is

(3)

where a and a + s are elements of Z2
n such that fs(a) = c and fs(a + s) = c. The only use

of the second register is to produce this special superposition in the first register. 
We will no longer use the second register or its contents, so we drop it from our notation
and write 

(4)

When c is chosen, the resulting mixed state can be written as

(5)

Recall that we don’t know the secret bit string s, and therefore we don’t know that
the state we just prepared is ρs. All we know is that we have prepared a state that is in
the search space of quantum states {ρs}s∈Z

2
n . Each of these possible quantum states cor-

responds to a possible secret bit string. Our task is to identify the secret quantum state
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1 The birthday paradox derives its name from the surprising result that you only need 23 people (a slightly larger
number than 3651/2) to have a 50 percent chance that at least two of them have the same birthday.
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and thus the secret bit string. We now define the Fourier observable. For each bit string
b in Z2

n, define

(6)

The orthonormal basis is {|χb〉}, where b ∈ Z2
n is called the Fourier basis or the Fourier

observable. Mathematicians might recognize this basis as being composed of the charac-
ters of the group Z2

n. A character χ of a finite abelian group is a homomorphism from
the group to the circle in the complex plane. Formally, the Hilbert space in which we 
are working is C[G], the group algebra, which is the complex vector space with the
canonical basis, or the point mass basis, indexed by the elements of the group. A charac-
ter can be viewed as a vector in C[G] via the following identification: 

(7)

It is a fundamental fact (Tolimieri et al. 1997) that the set of characters viewed as
vectors in this way is an orthonormal basis for C[G]. Indeed, a Fourier transform is
nothing other than a change of basis from the point mass basis, {|g〉}g∈G, to the basis of
characters, {|χ〉}χ. 

It is easy to show (Jozsa 1998) that, if we now observe the contents of the remaining
register in the Fourier basis, we observe |χb〉 with nonzero probability if and only if 
s • b = 0 (mod 2). This is the important relationship between the secret bit string s and
the only possible outcomes of the experiment. Therefore, if the actual outcome of the
observation is |χb〉, then we have eliminated half of the possible secret states. We have
therefore eliminated all states ρd such that d • b = 1 (mod 2). By repeating the state
preparation procedure followed by a measurement in the Fourier basis approximately 
n times, we eliminate all possible states except the true secret state ρs. �
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“When two systems, of which we know the
states by their respective representatives,
enter into temporary physical interaction
due to known forces between them, and
when after a time of mutual influence the
systems separate again, then they can no
longer be described in the same way as
before, viz. by endowing each of them with
a representative of its own. I would not 
call that one but rather the characteristic
trait of quantum mechanics, the one that
enforces its entire departure from classical
lines of thought. By the interaction, the 
two representatives (or ψ-functions) have
become entangled.”
—Erwin Schrödinger (1935)



Entanglement, a strong and
inherently nonclassical 
correlation between two or

more distinct physical systems, was
described by Erwin Schrödinger, 
a pioneer of quantum theory, as 
“the characteristic trait of quantum
mechanics.” For many years, entan-
gled states were relegated to being
the subject of philosophical argu-
ments or were used only in experi-
ments aimed at investigating the
fundamental foundations of physics.
In the past decade, however, entan-
gled states have become a central
resource in the emerging field of
quantum information science, which
can be roughly defined as the appli-
cation of quantum physics phenom-
ena to the storage, communication,
and processing of information. 

The direct application of entan-
gled states to quantum-based tech-
nologies, such as quantum state tele-
portation or quantum cryptography,
is being investigated at Los Alamos
National Laboratory, as well as other
institutions in the United States and
abroad. These new technologies
offer exciting prospects for commer-
cial applications and may have
important national-security implica-
tions. Furthermore, entanglement is
a sine qua non for the more ambi-

tious technological goal of practical
quantum computation. 

In this article, we will describe
what entanglement is, how we have
created entangled quantum states of
photon pairs, how entanglement can
be measured, and some of its appli-
cations to quantum technologies. 

Classical Correlation and
Quantum State Entanglement

To describe the concept of 
quantum entanglement, we are first
going to describe what it is not! 
Let us imagine the simple experi-
ment illustrated in Figure 1. In that
experiment, a source S1 continually
emits pairs of photons in two direc-
tions. As seen in the figure, one
photon goes toward an observer
named Alice, while the other goes
toward Bob. 

First, imagine that the photons
emitted by S1 are always polarized
in the horizontal direction.
Mathematically, we say that each
photon is in the pure state denoted
by the ket |H〉, that is, the “represen-
tative” of the state Schrödinger
referred to in the quotation on the
opposite page. Because the photons
are paired, the combined state of the

two photons is denoted |HH〉, where
the first letter refers to Alice’s pho-
ton and the second to Bob’s.

Alice and Bob want to measure
the polarization state of their
respective photons. To do so, each
uses a rotatable, linear polarizer, a
device that has an intrinsic trans-
mission axis for photons. For a
given angle φ between the photon’s
polarization vector and the polariz-
er’s transmission axis, the photon
will be transmitted with a probabili-
ty equal to cos2φ. (See the box
“Photons, Polarizers, and
Projection” on page 76.) Formally,
the polarizer acts like a quantum-
mechanical projection operator Pφ
selecting out the component of the
photon wave function that lines up
with the transmission axis. We say
that the polarizer “collapses” the
photon wave function to a definite
state of polarization. If, for exam-
ple, the polarizer is set to an angle θ
with respect to the horizontal, then
a horizontally polarized photon is
either projected into the state |θ〉
with probability cos2θ or absorbed
with probability 1 – cos2θ = sin2θ.
The bizarre aspect of quantum
mechanics is that the projection
process is probabilistic.The fate of
any given photon is completely 
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unknown. Furthermore, any informa-
tion about the photon’s previous
polarization state is lost.

Getting back to the experiment, 
we assume that Alice and Bob’s polar-
izers are always aligned in the same
way: When Alice sets her polarizer to
a certain angle, she communicates her
choice to Bob, who uses the same 
setting. Behind each polarizer is a
detector. In our experiment, Alice and
Bob rotate their polarizers to a certain
angle with respect to the horizontal
and record whether they detect a 
photon. Then, they repeat the proce-
dure for different polarizer settings. 
If Alice looks only at her own data 
(or Bob looks only at his), she can
determine the polarization state of the
photons emitted by the source—see
Figure 2(a). But Alice and Bob can
also make a photon-per-photon 
comparison of their data and deter-
mine the probability that they have

the same result, that is, they can
examine the photon–photon correla-
tions. 

Suppose Alice has her polarizer 
oriented to transmit horizontally 
polarized photons. In that case, each
photon coming to her from S1 will be
transmitted, and her detector will
“click,” indicating a photon has
arrived. Subsequent communication
with Bob would reveal that he also
detected each photon, so at this 
polarizer setting, there is a perfect 
correlation between Alice’s detection
of a photon and Bob’s. Similarly, 
by rotating the polarizer to the vertical
position, the two would again discover
a perfect correlation, namely, neither
party would detect his or her photons.

The correlation changes when Alice
and Bob have their polarizers oriented,
say, at +45° to the horizontal. In that
case, the photon sent to Alice has a
50 percent chance of passing through

her polarizer, and independently, the
photon sent to Bob has a 50 percent
chance of passing through his. 
The probability is therefore 25 percent
that both Alice and Bob detect a 
photon, 25 percent that neither detects
a photon, and thus 50 percent that they
obtain the same result. 

The correlation function G is 
shown in Figure 2(a′). It is equal 
to the product of the independent 
probabilities for detecting a photon
[(cos2θ)A × (cos2θ)B], plus the prod-
uct of the probabilities for not detecting
one [(sin2θ)A × (sin2θ)B], where sub-
scripts A and B are for Alice and Bob,
respectively. Thus, Alice and Bob
deduce that the two photons are 
independent of each other and the 
wave function is in fact separable: 
|HH〉 = |H〉|H〉. In other words, the 
correlation is entirely consistent with
classical probability theory. The pho-
tons are classically correlated.
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Figure 1. A Simple Two-Photon Correlation Experiment  
In this experiment, a source emits pairs of photons: One photon is going to Alice and the other to Bob. Each photon passes
through a linear polarizer on its way to its respective detector. Both Alice and Bob’s polarizers are rotatable and can be
aligned to any angle with respect to the horizontal, but Bob’s is always kept parallel to Alice’s. For a given polarizer setting,
Alice and Bob record those instances when they have the same results, that is, when both detect photons or when they
don’t. The figure shows the source emitting two horizontal photons in the state |ΨΨ〉 = |HH〉. The experiment can be performed
with other sources to examine differences between other two-photon states. (Picture of Bob is courtesy of Hope Enterprises, Inc.)

Photon source

Polarized photons

Detector

Alice

Bob

Rotatable 
polarizer
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Figure 2. Quantum States, Polarization, and Correlation 
The three sets of graphs show the results of the three experiments discussed in the text. In each case, the leftmost graph shows
the probability that Alice alone detects a photon and reveals information about the net polarization state of her photon. The right-
most graph shows the probability that Alice and Bob have the same result, which reveals information about the two-photon state.

(a) S1 emits photons in the pure
state |HH〉. Alice measures a cos2θ
function for her polarization data
and deduces that photons coming
to her are horizontally polarized.
(A different linear polarization
would shift the curve to the left or
right.) (a′) We define the correla-
tion function G as the probability
that both Alice and Bob detect a
photon, plus the probability that
neither detects a photon. For this
source, G is completely consis-
tent with classical probability 
theory for independent events;
that is, the correlation function 
is the product of the detection
probability of each photon in 
the pair.

(b) The source S2 emits photons
in the partially mixed state
1/2(|HH〉〈HH| + |VV〉〈VV|). Photons
from this source do not have a 
net polarization. Alice receives at
random either an |H〉 or a |V〉  pho-
ton, so the sum of her measure-
ments averages to a 50 percent
detection probability independent
of angle. (b′) The correlation func-
tion G, however, is the same as 
in (a), revealing that the photons
in each pair are independent of
each other and have polarization
H or V. Therefore, the two photons
exhibit the same classical corre-
lations seen in (a).

(c) The source S3 emits photons
in the maximally entangled state
1/√2(|HH〉 + |VV〉). Unlike the 
photons in the mixed state,
each photon is unpolarized.
Nevertheless, if Alice and Bob
align their polarizers the same
way, they always get the same
result independent of angle.
(c′) Polarization measurements of
the two photons are 100 percent
correlated. The photons exhibit
“quantum” correlations.
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Probability that Alice (or Bob) detects a photon: p+ = cos2θ. 
Probability that Alice (or Bob) does not detect a photon: p– = sin2θ.  

For independent photons: G = GHH = p+
A × p+

B + p–
A × p–

B = cos4θ + sin4θ.

For this mixed state, 
G = 1/2(GHH + GVV) = GHH .



Now, consider performing the
experiment with a second source S2
that has a 50 percent chance to emit
two horizontally polarized photons
|HH〉 and a 50 percent chance to emit
two vertically polarized photons |VV〉.
This type of source emits photons in a
mixed state, which cannot be written
as a single “ket.” Instead, a mixed
state must be analyzed in terms of
several kets, each representing a par-
ticular, distinct pure state that has a
probability associated with it. Making

a measurement on a mixed state is
equivalent to probing an ensemble 
of pure states. The likelihood of 
measuring a particular pure state is
given by the appropriate probability.
(More-detailed, mathematical descrip-
tions of pure and mixed quantum
states are found in the box “Pure,
Entangled, or Mixed?” above.) 

The output of S2 is random (either
|HH〉 or |VV〉), so Alice receives at
random either an |H〉 or a |V〉 photon.
Because the probability of detecting

|H〉 is 1/2 cos2θ, and the probability of
detecting |V〉 is 1/2 sin2θ, Alice has a
50 percent chance of detecting a pho-
ton regardless of how she sets her
polarizer. The same is true for Bob.
Each observer, therefore, deduces that
the photons coming from S2 have no
net polarization. But as seen in
Figure 2(b′), the correlation function
tells a different story. In fact, the cor-
relation function for this source is
identical to the one obtained for S1
because, in both cases, the individual
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A pure state is a vector in a system’s Hilbert space. For
example, the most general, pure two-photon polarization
state can be written as 

|ψpure〉 = α |HH〉 + β |HV〉 + γ |VH〉 + δ |VV〉  . (1)

This state is specified by the four probability amplitudes α,
β, γ, and δ (expressed by four complex numbers or eight
real numbers) although these parameters are subject to two
constraints. The first is that the mean-square amplitudes
must equal unity, that is, 

|α |2 + |β |2 + |γ |2 + |δ |2 = 1  . (2)

The second relates to the fact that the overall phase of a
wave function has no physical relevance. The net result of
these constraints is that any pure two-photon state depends
on only six independent real numbers. 

In general, however, any physical system contains a greater
or lesser degree of randomness and disorder, and one must
adapt the formalism of quantum mechanics to take this 
randomness into account. We do so by averaging over 
the fluctuations. It is convenient to represent states as 
density operators, or density matrices, formally defined as 

ρ = |ψ〉〈ψ |  , (3)

where the overbar denotes an ensemble average over the
randomness. All the measurable properties of the state are
determined by ρ. 

The density matrix must be used when representing mixed
states, which can be thought of as probabilistic combina-

tions of pure states. Mathematically, the density matrix
can always be decomposed into an incoherent sum over
pure states, 

ρ = Σipi|ψi〉〈ψi|  , (4)

where each |ψi〉 is a pure state and pi are probabilities 
with values that lie between 0 and 1 and whose sum is 1.
In general, this decomposition is not unique. To 
characterize mixed states, one uses mean values and 
classical coherences; that is, one must specify the four
mean-square amplitudes (subject to the constraint 
|α |2 + |β |2 + |γ |2 + |δ |2 = 1) and the six independent 
classical complex correlations α∗β

—–
, α∗γ

—–
, and so on. 

For example, the source S2 mentioned in the text emits a
partially mixed state that is 50 percent |HH〉 and 50 per-
cent |VV〉, so that 

ρmix = 0.5 |HH〉〈HH| + 0.5 |VV〉〈VV|  , (5)

or in matrix form

(6)

This state is neither pure nor completely random; it is 
partially mixed. 

We next consider whether quantum states involving two 
or more systems (for example, two photons), are separable 

ρmix

.5   0   0   0

 0   0   0   0

 0   0   0   0

 0   0   0  .5 

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

   .

Pure, Entangled, or Mixed?



photons leave the source in definite
polarization states. For S1, the polar-
ization information is “carried” indi-
vidually by each photon. For S2, 
the polarization information is carried
by the photon pairs. By examining the
correlations, Alice and Bob can
deduce that information. 

A different situation occurs for a
source S3 that emits pairs of photons
in the state |Φ+〉 = 1/√2 (|HH〉 + |VV〉).
Like the mixed state from S2, this
state is a combination of two horizon-

tally polarized photons and two verti-
cally polarized photons. Unlike the
mixed state, |Φ+〉 is a coherent, quan-
tum mechanical superposition: A prob-
ability amplitude is associated with
each component, |HH〉 and |VV〉, and
the two components have a fixed phase
relationship. An important property of
this particular state is that we can
rotate the axes of polarization (H and
V) and not change the state’s essential
properties.

The state |Φ+〉 is a fully entangled

quantum state. It cannot be factorized,
or separated, into a part describing one
of the photons and a part describing
the other. The two photons are inextri-
cably linked to each other and their
properties are always correlated. 
A measurement of one of the photons
makes the two-photon state instantly
disappear, and the remaining photon
assumes a definite state that is perfect-
ly correlated with the measured photon.
Neither photon carries definite infor-
mation by itself—all the information is
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or entangled. If the state is separable and pure, it can be
written (in some basis) as a product of the states of the indi-
vidual systems, that is, as 

|ψ〉 = |ψA〉 ⊗ |ψB〉  , (7)

where ⊗ denotes the tensor product. The state |ψ1〉 = |HH〉 is
one such product of pure states and can be written as 

|ψ1〉 = |HA〉 ⊗ |HB〉  . (8)

Another example is the state 

|ψ〉 = (|HH〉 + |HV〉 + |VH〉 + |VV〉)/2  , (9)

which can be written as the product state 

|ψ〉 = 1/√2(|H〉 + |V〉)A ⊗ 1/√2 (|H〉 + |V〉)B  . (10)

A third example is the matrix ρmix on the opposite page,
which represents a separable mixed state. 

In contrast, if there is no way to write the two-photon state
as a direct product of states, the state is said to be entangled.
This definition leads to a quantity called concurrence, which
is defined for the general pure state |ψpure〉 by

C = 2|αδ – βγ |  . (11)

If and only if C is zero is the state separable. If C is equal to
unity (its maximum value), the state is maximally entangled. 

For example, consider any one of the four Bell states 

|Φ±〉 = 1/√2(|ΗΗ〉 ± |VV〉)  , and 

|Ψ±〉 = 1/√2(|HV〉 ± |VH〉)  . (12)

These states are a basis for the two-photon Hilbert space,
and linear combinations of the four states can be used to
represent any two-photon state. If we compare, say, |Φ+〉
with the general state |ψpure〉, we have α = δ = 1/√2, and
β = γ = 0. Thus C = 1, and this Bell state is maximally
entangled (as are the other three). 

The value of C provides a good metric for the amount
of entanglement in a pure two-qubit system.
Equivalently, some researchers use C2 (a quantity known
as the tangle) to characterize the degree of entanglement. 

The concurrence can also be defined for mixed states,
although the definition is much more complicated.
Indeed, calculating the concurrence for mixed states of
more than two qubits is currently a hot topic of research. 

In the everyday world, it is common to ascribe two (or
more) variables to the same object (for example, a hot,
sweet cup of coffee). Similarly, quantum states are
described by the two characteristics discussed above, 
so that it is possible to have a pure entangled state, 
a pure separable state, a mixed separable state, or
something in between, such as a partially mixed, 
partially entangled state.



carried in the joint two-photon state.
Thus, when Alice and Bob repeat

the experiment using the source S3,
the correlation is 100 percent regard-
less of polarizer orientation (assuming
Bob’s polarizer is always set the same
way as Alice’s). Figure 2(c) illustrates
the striking difference between the
classical correlations of the photons
generated by the sources S1 and S2
and the nonclassical correlations
exhibited by entangled photons.

To better understand the correlation
curve shown for |Φ+〉, consider that
quantum mechanics allows us to
express that state in any basis; that is,
|Φ+〉 = 1/√2 (|XX〉 + |YY〉), where |X〉 is
an arbitrary linear-basis state and |Y〉
is the orthogonal-basis state. Suppose
Alice has her polarizer set to +45°. In
the diagonal (+45/–45) basis, the
entangled state will be |Φ+〉 =
1/√2 (|+45,+45〉 + |–45,–45〉). If Alice
detects her photon (a 50–50 proposi-
tion), then Bob’s photon will collapse
to the |+45〉 state, and he will detect
his photon as well. Likewise, if Alice
doesn’t detect her photon, Bob won’t
detect his. The same deductions can
be made for any polarizer setting.  

According to quantum mechanics,
the correlation occurs regardless of
the distance separating the two pho-
tons. For example, suppose one of
two entangled photons from the state
|Φ+〉 is sent to Alice, who “stores” it
in 
her laboratory at Los Alamos, 
New Mexico. The other photon is sent
to Bob, who is in orbit about the star
α-Centauri, nearly 4 light-years away.
After some time, Alice performs 
a measurement on her photon and
determines that it is |H〉. Her measure-
ment selects the |HH〉 part of the state
|Φ+〉 and eliminates the |VV〉 part so
that Bob’s photon is necessarily in 
the state |H〉. If, instead, Alice has
determined that her photon was |+45〉,
the state of Bob’s photon will be
instantly collapsed to |+45〉 as well. In
other words, the state of Bob’s photon

has been nonlocally influenced by
Alice’s measurement. By nonlocal, we
mean that the correlation between
Alice and Bob’s measurements occurs
even if there is not enough time for a
light signal (or any signal) to propa-
gate between the two experimentalists.
This is not to say that special relativity
has been violated: Because Alice 
cannot predetermine the outcome of
her measurement, she cannot use the
nonlocal quantum correlations to send
any information to Bob. In fact, entan-
glement can never be used to send 
signals faster than the speed of light.
Nonetheless, Bob’s photon “knows”
the outcome of Alice’s measurement. 

Nonlocality was the central point of
a famous argument raised by Albert
Einstein, Boris Podolsky, and Nathan
Rosen in 1935, now known as the
EPR paradox. The three physicists dis-
agreed with the Copenhagen interpreta-
tion of quantum mechanics, according
to which the state of a quantum system
is indeterminate until it is projected
into a definite state as a result of a
measurement. Einstein, Podolsky, and
Rosen argued that even unmeasured
quantities corresponded to definite 
“elements of reality.” The quantum
state only appeared to be indeterminate
because some of the parameters that
characterize the system were unknown
and unmeasurable. These local parame-
ters, or “hidden variables,” determined
the outcome of the experiment. 

In 1964, John Bell showed that the
correlations between measured prop-
erties of any classical two-particle 
system would obey a mathematical
inequality, but the same measured cor-
relations would violate the inequality
if the two particles were an entangled
quantum system. Experiments could

therefore determine if nature exhibited
nonlocal features. Following the
development of laboratory sources of
entangled photons, experimental tests
of Bell’s inequality were pursued with
vigor. The results to date suggest that
the observed photon correlations can-
not be explained by any local hidden-
variable theory,1 and most physicists
agree that quantum mechanics is truly
a nonlocal theory. 

Entanglement and 
Quantum Information 

Entanglement, a measurable prop-
erty of quantum systems, can be
exploited for specific goals. Here, we
present three potential applications, all
of which have been shown to work as
proof-of-principle demonstrations in
the laboratory. 

Quantum Cryptography. Consider
two bank managers, Alice and Bob,
who want to have a secret conversa-
tion. If they are together in the same
room, they can simply whisper dis-
cretely to each other, but when Alice
and Bob are in their respective cross-
town offices, their best chance for
secret communication is to encrypt
their messages. 

A generic, classical encryption 
protocol would begin when Alice and
Bob convert their messages to sepa-
rate binary streams of 0s and 1s.
Encryption (locking up the messages)
and decryption (unlocking the mes-
sages) are then performed with a set
of secret “keys” known only to the
two bankers. Each key is a random
string of 0s and 1s that is as long as
the binary string comprising each
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1 There were two loopholes to the EPR tests. The first stemmed from the fact that 
the detectors were not efficient enough. Consequently, the observed correlations could
have been the result of some new physics that did not require nonlocal interactions. 
The second loophole stemmed from the researchers’ inability to choose rapidly and 
randomly a basis for photon measurement. This inability allowed for a potential 
communication conspiracy between Alice and Bob’s systems. Both of these loopholes
have recently been closed but, so far, not in the same experiment.



message. To encrypt, Alice (the
sender) sequentially adds each bit of
the key to each bit of her message,
using modulo 2 addition (0 + 0 = 0, 
0 + 1 = 1, 1 + 0 = 1, and 1 + 1 = 0).
She then sends the encrypted message to
Bob, who decrypts it simply by repeat-
ing the operation, that is, by performing
a sequential, bit-by-bit modulo 2 addi-
tion of the key to the message. 

This type of encryption protocol,
known as a one-time pad, is currently
the only provably secure protocol. But
the one-time pad is effective only if
Alice and Bob never reuse the key,
and more obviously, if the key remains

secret. A potential eavesdropper, Eve,
cannot be allowed to glean any part of
the bit stream that makes up the key.
Therein lies a central problem of cryp-
tography: How can secret keys be cre-
ated and then securely distributed?
The nonlocal correlations of entangled
photons can play a role in this regard.
(One can also exploit the properties of
nonentangled photons in cryptographic
schemes. See the article “Quantum
Cryptography” on page 68.)

In the entangled-state quantum
cryptography scheme, Alice and Bob
perform an experiment similar to the
one described in the first section of

the paper. They use a source S3 that
emits entangled photons in the general
state |Φ+〉 = 1/√2 (|XX〉 +|YY〉), where
|X〉 is an arbitrary linear-basis state
and |Y〉 is the orthogonal-basis state.
One photon goes to Alice and the other
to Bob. In this protocol, however,
either banker can choose—at random
and independent of each other—to use
a half-wave plate (HWP) to rotate
photon polarization by a set amount.
The bankers then detect the photon in
the H/V basis using a polarizing beam
splitter, which transmits horizontally
polarized photons and reflects verti-
cally polarized photons (see Figure 3).

Entangled-photon source 

PBS
H-detector V-detector

Bob

Alice

(1) ⏐ +〉 = 1/√// 2 (√√ ⏐X,X 〉 + ⏐Y,Y 〉)

(2) ⏐ '+〉 √√2 (√√ ⏐(X + 45),X 〉 + ⏐(Y + 45),Y 〉)

(4) ⏐ B〉 ⏐– 5 〉
(3) ⏐ A〉 ⏐H 〉

HWP

1

1

0

0

ΦA

Φ+
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Figure 3. Quantum Cryptography Using Entangled Photons

Alice and Bob can use the properties of
entangled photons to create a pair of
identical cryptographic keys. (1) The
source emits entangled photons in a
maximally entangled state |ΦΦ〉  = 1/√2(|XX〉
+ |YY〉), where |X〉 is an arbitrary linear-
basis state and |Y〉 = |X + 90〉 is the
orthogonal-basis state. One photon goes
to Alice and the other to Bob. (2) Alice
chooses at random either to let her pho-
ton pass or to insert a half-wave plate
(HWP), which will rotate her photon by
+45°. The latter choice changes the rela-
tive orientation between the two photons
by +45°. In the case shown, she chooses
to rotate her photon. The new entangled
state is |ΦΦ′〉. (3) Alice uses a polarizing

beam splitter (PBS) to measure her pho-
ton in the H/V basis. This optical element
transmits horizontally polarized photons
and reflects vertically polarized photons,
and her unpolarized photon can collapse
to either a horizontal or vertical polariza-
tion with equal probability. In this case, it
collapses to a horizontal polarization.
Alice records a bit value of 0. (5) Bob’s
photon was entangled with Alice’s, so as
a result of her measurement, his photon
assumed the definite polarization state 
|H – 45〉 = |–45〉. If Bob makes the same
choice as Alice and inserts his HWP, he
will rotate his photon’s polarization by
+45° and into a horizontal polarization.
His photon will register in the H-detector,

and he will record a bit value of 0. If he
makes the opposite choice and doesn’t
rotate his photon, the photon polarized
at –45° has an equal probability of going
to either detector (bit value either 0 or 1).
As seen in Table I on the next page,
whenever Bob and Alice make the same
choice, they keep the bit because their
bit values coincide. If they make oppo-
site choices, they discard the bit since
the values are not correlated. Alice and
Bob can construct an identical sequence
of random bits—a cryptographic key—
simply by declaring their sequence of
choices. The discussion can be public
because the bit values are never
revealed.



Detection of a horizontally polarized
photon is recorded as a 0; of a verti-
cally polarized photon, as a 1. 

After a sufficient number of meas-
urements (that number is dictated by
the length of the key), Alice and Bob
have a public discussion, during
which they reveal whether they insert-
ed the HWP before each measure-
ment. At no time do they reveal the
actual measurement results. Whenever
Alice and Bob make the same choice
(50 percent of the time), they know
from the properties of entangled pho-
tons that they will have completely
correlated results. By contrast, if one
of them uses the HWP and the other
doesn’t, they will discard the results
because their measurements would be
completely uncorrelated (see Table I).
Following this public discussion, each
banker will be able to privately con-
struct the same random string of 0s
and 1s—an ideal key for cryptography.

What about the eavesdropper
Eve? She is completely foiled in her
attempts to know the secret key.
Certainly, she cannot tap the photon
line, as she might with conventional,
classical communications. A single,
indivisible quantum object—namely,
a photon—is the conveyor of infor-
mation in this cryptographic proto-
col. If Eve steals Bob’s photon (a
“denial-of-service” attack), the pho-

ton’s information never becomes part
of the key. Thus, although a wiretap
would reduce the rate of the trans-
mission, it would not jeopardize the
security of the key. 

Eve can try to intercept the photon,
measure it, and send another one to
Bob. But any measurement Eve would
make to determine the photon’s 
polarization state would necessarily
perturb the photon and collapse the
entangled state. The photon she sends
to Bob would therefore be classically
correlated with Alice’s photon.
Consequently, Eve’s intervention
would necessarily induce additional
errors into Bob’s key. 

This last point is significant.
Unlike their theoretical counterparts,
the encryption keys created by an
actual quantum cryptography system
initially have a small fraction of
errors, because real equipment is
always less than perfect. To make
sure their key is secure, Alice and
Bob ascribe all errors to Eve and
then use this “bit error rate” to esti-
mate the maximum amount of infor-
mation available to the eavesdropper.
They then use a privacy amplifica-
tion scheme (discussed in the cryp-
tography article on page 68) to
reduce Eve’s knowledge of the secret
key to less than one bit. 

But the bit error rate alone can lead

to a false sense of security. If nonentan-
gled photons with a definite polariza-
tion are sent to Bob, it is conceivable
that some other degree of freedom may
also be coupled to the polarization
state. For example, if separate lasers
are used to produce the two polariza-
tion states, the photons from each laser
may have slightly different timing
characteristics or frequency spectra.
Such a difference would in principle
allow an eavesdropper to distinguish
between photons without disturbing
the polarization state and, hence, 
without affecting the bit error rate. 

When the photons are entangled,
however, any leakage of information
to other degrees of freedom can be
shown to automatically manifest itself
in the error rate detected by Alice and
Bob. In other words, any degree of
freedom with which the polarization
might be coupled will cause notice-
able effects on the polarization corre-
lations. Therefore, using only the
detected error rates, one can set an
upper limit on the information avail-
able to an eavesdropper, even one
who is not directly measuring the
polarization of the photons, and then
use privacy amplification to eliminate
that information.

As a last resort, Eve may think of
“cloning” Alice’s photon. She could
measure the clone while allowing the
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Table I. Constructing a Cryptographic Key with Entangled Photons

First Receiver
(Alice)

Second Receiver
(Bob)

Angle of
Rotation

(°)

Detector Bit
Value

Polarization to
Second Receiver

Angle of
Rotation

(°)

Detector Bit
Value

Communication
Results

0 H 0 H 0 H 0 Keep bit

0 V 1 V 0 V 1 Keep bit

0 H 0 H    +45 H or V 0 or 1 Discard bit

0 V 1 V    +45 H or V 0 or 1 Discard bit

   +45 H 0    –45° 0 H or V 0 or 1 Discard bit

   +45 V 1    +45° 0 H or V 0 or 1 Discard bit

   +45 H 0    –45°    +45 H 0 Keep bit
   +45 V 1    +45°    +45 V 1 Keep bit



original to continue on to Bob, thus
completely covering her tracks. But she
is again foiled by quantum mechanics.
According to the no-cloning theorem, 
it is impossible to make a copy of a
photon in an unknown state while
simultaneously preserving the original.
(See the box “The No-Cloning
Theorem” on page 79.) Eve is clearly
out of business.

Teleportation. In 1993, Charles
Bennett of IBM, Yorktown Heights,
and his colleagues proposed a
remarkable experiment with 
entangled particles, namely, the 
“teleportation” of a pure quantum
state from one location to another. 

Charlie wants to send his friend
Bob a photon in an arbitrary, pure
quantum state |ψ〉 = α |H〉 + β |V〉. He
enlists the aid of Alice, who happens
to run the Teleportation Laboratory
shown in Figure 4. Inside the lab, a
source S3 is emitting a pair of entan-
gled photons, one of which goes off
to Bob. The other photon is input into
Alice’s “teleporter.” Charlie is
instructed to send his photon into the
teleporter as well.

Alice then performs a special joint
measurement of the polarization state
of the two photons in the teleporter.
She relays the result to Bob, who 
subsequently performs a simple trans-
formation of the polarization state of

his photon. As if by magic, the state
of Bob’s photon is transformed into
the state of Charlie’s original photon. 

Mathematically, this magic is
described as follows. The three-
photon initial state (that is, Charlie’s
photon plus the two entangled pho-
tons) can be represented as 

|ψ0〉 = (α |H〉 + β |V〉)C
× 1/√2(|HH〉 + |VV〉)A,B ,   (1)

where the subscripts C, A, and B refer
to Charlie’s, Alice’s, and Bob’s pho-
tons, respectively. But |ψ0〉 can also
be represented as a superposition of
states, each constructed in the follow-
ing way: Charlie and Alice’s photons
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Figure 4. Quantum State
Teleportation 
(a) Alice’s teleportation lab consists of
an entangled photon source and a Bell
state analyzer (the teleporter). One
entangled photon goes to Bob and the
other to the teleporter. Charlie sends a
photon of unknown polarization state
into the teleporter. (b) Alice performs a
joint polarization measurement of the
two photons in the teleporter and
relays the result to Bob using two clas-
sical bits of information. The photon
going to Bob is projected into a pure
state as a result of Alice’s measure-
ment. (c) Upon receiving Alice’s classi-
cal information, Bob performs a simple
transformation on his photon, such as
a rotation of the polarization vector. He
duplicates the polarization state of
Charlie’s photon without knowing any-
thing about its original state.



are represented by one of the Bell
states |Φ±〉 = 1/√2 (|ΗΗ〉 ± |VV〉) and 
|ψ±〉 = 1/√2(|ΗV〉 ± |VH〉), 

and Bob’s photon is represented as a
photon in a pure state. Thus,

|ψ0〉 = 1/2{|Φ–〉C,A (α|H〉 – β|V〉)B

+ |Φ+〉C,A (α|H〉 + β|V〉)B

+ |Ψ–〉C,A (–β|H〉 + α|V〉)B

+ |Ψ+〉C,A (β|H〉 + α|V〉)B}  .   (2)

Technically speaking, this repre-
sentation is possible because the Bell
states are a basis for the two-photon
Hilbert space and any state of two
photons can be represented as a linear
superposition of these states. It is
important to point out that Alice’s
photon remains entangled with Bob’s.
Teleportation relies on Alice’s ability
to perform a joint polarization meas-
urement that explicitly projects the 
two photons in the teleporter into one
of the four Bell states. Once Alice
completes her measurement, Bob’s
photon (which is totally correlated to
Alice’s) will assume the corresponding
pure state. For example, if the Bell
state measurement produces the result
|Ψ–〉C,A, then Bob’s photon would be
projected into the pure state 
|ψ〉 = (–β |H〉 + α |V〉)B. By using a
simple optical element, Bob can
rotate the polarization state of his
photon by 90° and transform it into
the state |ψ′〉 = (α |Η〉 + β |V〉)B, that
is, the original input state. Provided
Alice can specify which Bell state
was measured (a specification that
requires two bits of classical infor-
mation), Bob can always choose an
appropriate optical element to effect
the proper rotation.

In a series of groundbreaking exper-

iments conducted at the University of
Innsbruck, Austria, Anton Zeilinger
and coworkers were the first to demon-
strate quantum teleportation. The group
is now able to determine two of the
four Bell states unambiguously (the
other two states give the same experi-
mental signature2) and prove for those
cases that the state of Charlie’s photon
could indeed be transferred to Bob’s. 

Several points should be made
about quantum teleportation. First,
during the entire procedure, neither
Alice nor Bob has any idea what the
values are for the parameters α and β
that specify Charlie’s photon. The ini-
tial, arbitrary pure state remains
unknown. Second, teleportation is 
not cloning. The original state of
Charlie’s photon is necessarily
destroyed by Alice’s measurement, 
so the photon that Bob ends up with 
is still one of a kind. 

Finally, hopeful sci-fi fans may be
a little disappointed by this realization
of teleportation. Unlike the TV show
“Star Trek,” in which Captain Kirk
could be transported body and soul
from the starship Enterprise to the
surface of an alien planet,3 here only
certain information about the photon
is transferred to a photon in some 
faraway location. Because photons
have numerous degrees of freedom in
addition to their polarization, the orig-
inal and the teleported photons are
two different entities. And it goes
without saying that an even simpler
way for Charlie to send his quantum
state to Bob would be to dispatch the
original photon directly to him. 

Nevertheless, teleportation remains
an interesting application of quantum
state entanglement. Furthermore,
researchers have discussed how it
might form the basis of a distributed

network of quantum communication
channels and how this basic informa-
tion protocol might be useful for
quantum computing. 

Quantum Microscopy and
Lithography. The general topic of
quantum metrology involves capitaliz-
ing on the ultrastrong correlations of
entangled systems to make measure-
ments more precisely than would be
possible with classical tools. The two
main photon-based applications under
investigation are quantum microscopy
and quantum lithography.

At present, two-photon microscopy
is widely used to produce high-
resolution images, often of biological
systems. However, the classical light
sources (lasers) used for the imaging
have random spreads in the temporal
and spatial distributions of the pho-
tons, and the light intensity must be
very high if two photons are to inter-
sect within a small enough volume
and cause a detectable excitation. The
high intensity can damage the system
under investigation. Because the tem-
poral and spatial correlations may be
much stronger between members of an
entangled photon pair, one could con-
ceivably get away with much weaker
light sources, which would be much
less damaging to the systems being
observed. Moreover, entangled-photon
sources may also enable obtaining
enhanced spatial resolution.

Lithography, in which a pattern is
optically imaged onto some photoresist
material, is the primary method of 
manufacturing microscale or nanoscale
electronic devices. An inherent limita-
tion of this process is that details smaller
than a wavelength of light cannot be
written reliably. However, quantum 
state entanglement might circumvent
this limitation. Under the right circum-
stances, the interference pattern formed
by beams of entangled photon pairs can
have half the classical fringe spacing. 

Quantum lithography requires 
two beams of photons, which we 
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2 Distinguishing between the four Bell states is still an unsolved technical problem. It
requires a strong nonlinear interaction between two photons, which is extremely diffi-
cult to achieve in practice. 
3 “Teleportation” (though it was not explicitly called that) was supposedly introduced in
this TV show because the producer, Gene Roddenberry, wished to save the expense of
simulating the landing of a starship on a planet.



will call A and B, but in this case, 
the type of entanglement is different
from the one discussed in the previous
sections. What is needed is a coherent
superposition consisting of the state in
which two photons are in beam A
while none are in B and the state in
which no photon is in beam A while

two photons are in B. Such number-
entangled states can be made in the
laboratory, and the predictions about
fringe spacings have been verified.
However, other obstacles must be
overcome in order to surpass current
classical-lithography techniques.
Researchers continue to explore the

potential of this ideawith the hope of
achieving a viable commercial technol-
ogy. 

Creating and Measuring
Entangled States

If quantum state entanglement 
is such a remarkable property
because it allows one to perform
secret communications, teleport
states, or test the nonlocality of 
quantum mechanics, one naturally
wonders how to make entangled
states. Currently, scientists can create 
entangled states of particles in a 
controlled manner by using several
technologies such as ion traps, cavity
quantum electrodynamics (QED),
and optical down-conversion. Here,
we will concentrate on the optical
realization. 

Crystals of a certain chemical
structure, such as beta-barium borate
(BBO), have the property of optical
nonlinearity, which means that the
polarizability of these crystals
depends on the square (or higher
powers) of an applied electric field.
The practical upshot of this property
is that, when passing through such a
crystal, a single-parent photon can
split (or down-convert) into a pair of
daughter photons. The probability
that this event occurs is extremely
small; on average, it happens to only
one out of every 10 billion photons! 

When down-conversion does
occur, energy and momentum are
conserved (as they must be for an
isolated system). The daughter pho-
tons have lower frequencies (longer
wavelengths) than the parent photon
and emerge from the crystal on oppo-
site sides of a cone that is centered
about the direction traveled by the
parent. For what is known as Type I
phase matching, the daughters
emerge from a specifically oriented
BBO crystal with identical polariza-
tions that are aligned perpendicular
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Figure 5. Entangled-Photon Source
(a) For a given orientation of the beta-barium borate (BBO) crystal, a horizontally

polarized parent photon produces a pair of vertically polarized daughters.

The daughters emerge on opposite sides of an imaginary cone. The cone’s axis is

parallel to the original direction taken by the parent photon. The two daughter 

photons are not in an entangled state. Reorienting the BBO crystal by 90° will 

produce a pair of horizontally polarized daughters if a vertically polarized pump

beam is used. (b) Passing a photon polarized at +45° through two crossed BBO

crystals can produce two photons in an entangled state. Because of the

Heisenberg uncertainty principle, there is no way to tell in which crystal the parent

photon “gave birth,” and so a coherent superposition of two possible outcomes

results: a pair of vertically polarized photons or a pair of horizontally polarized

photons. The photons are in the maximally entangled state |ΦΦ+〉 = 1/√2(|HH 〉 + |VV 〉).



to the parent polarization—see
Figure 5(a). Because each photon is
in a definite state of polarization, the
two photons are not in an entangled
state but are classically correlated.
(The crystal acts like the source S1
described earlier.)

To create photons in the entangled
state, one can use two crystals that
are aligned with their axes of sym-
metry oriented at 90° to each other, 
as shown in Figure 5(b). With
crossed crystals, two competing
processes are possible: The parent
photon can down-convert in the first
crystal to yield two vertically polar-
ized photons (|VV〉), or it can down-
convert in the second to yield two
horizontally polarized photons
(|HH〉). It is impossible to distinguish
which of these processes has

occurred. Thus, the state of the 
daughter photons is a coherent 
quantum-mechanical superposition of
the states that would arise from each
crystal alone; the crossed crystals
produce photons in the state 
|Ψout〉 = 1/√2(|ΗΗ〉 + |VV〉), which is
maximally entangled.4

Figure 6 shows how this basic
source can be adapted to produce any
pure quantum state of two photons by
placing rotatable half- and quarter-

wave plates (which can be used to
transform the polarization state of a
single photon) before the crystal and in
the paths of the two daughter photons.
To create more general quantum
states—mixed states—a long birefrin-
gent crystal can be used to delay one
polarization component with respect to
the other. If the relative delay is longer
than the coherence time of the photons,
the horizontal and vertical components
have been effectively decohered; that
is, the phase relationship between the
different states is destroyed.
Researchers are still discovering how
to combine sources and polarization-
transforming elements to create all
possible two-photon quantum states.
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Figure 6. Creating and Measuring Two-Photon Entangled States 
(a) The “parent” photons are created in an argon ion laser and are linearly polarized
with a polarizing beam splitter (PBS). The half-wave plate (HWP) rotates the polar-
ization state before the photon enters the entangled-photon source. The entangled
photons produced diverge as they exit. Each photon’s polarization state can be
altered at will by the subsequent HWP and quarter-wave plate (QWP). The decoher-
ers following the state selection allow us to produce (partially) mixed photon states.
The optical elements (QWP, HWP, and PBS) in the tomographic analyzer allow us to
measure each photon in an arbitrary basis, for example in H/V or +45/–45.
Combining the measurements on both photons allows us to determine the quantum
state. (b) In the photo, Paul Kwiat is shown with the two-photon entangled source 
at Los Alamos.

4 In an alternative approach known as
“Type II phase matching,” only one crys-
tal is needed to create the entangled state.
The crystal has a different orientation,
and each of the daughter photons emerges
from the crystal on one of two possible
exit cones. Entangled photons created by
this approach were used in the first
demonstration of quantum teleportation. 

(a)

(b)



The Map of Hilbert Space

As discussed in the box on page 56,
a mixed state of two photons  (or in
general, a mixed state of two qubits)
is represented by a 4 × 4 density
matrix, which is described by 15 inde-
pendent parameters (15 real numbers).
To determine the independent parame-
ters, we make 15 coincidence 
measurements on the ensemble of
photon pairs emitted from the source.
Each measurement is similar to the
one used in the simple experiment
described at the start of this article.
The measurement may be made with
the tomographic analyzer shown in
Figure 6. Using such a system, we
were able to determine the density
matrices of many types of states. 
An example is shown in Figure 7. 

Whereas 15 numbers fully describe
a two-photon mixed state, the density
matrix for N photons needs 4N – 1 
real numbers. Thus, the density 
matrix of a 4-photon state contains
255 parameters and requires 255 sepa-
rate measurements just to characterize
the state. Note that, if each parameter
is allowed to assume one of, say,
10 possible values, those 4 photons can
be in any of 10255 distinct quantum
states! This number of states is many
orders of magnitude greater than the
total number of particles in our 
universe. The mathematical space 
in which the quantum states rest 
(the Hilbert space) is unfathomably
large, and in order to have any hope 
of navigating it, one needs to introduce 
a simpler representation for quantum
states. 

Two characteristics of central
importance for quantum information
processing are the extent of 
entanglement and the degree of 
purity of an arbitrary state. A quantity
called the von Neumann entropy 
has been introduced to characterize 
the degree of purity. (See the box
“Characterizing Mixed States” on 
the next page.) However, for the 
analysis of two-photon states, 
we found it easier to use a related
quantity, known as the linear entropy.
When the linear entropy equals zero,
the state is pure. When it reaches 
its maximum value of 1, the state is
completely random. 

Measuring the entanglement of a
mixed state is more complicated and,
in general, is an unsolved research
problem when more than two qubits
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Figure 7. Density Matrices
Theoretical and experimental density
matrices for the entangled state
|ΦΦ+〉 = 1/√2 (|HH〉 + |VV〉) are illustrated
here. Both real and imaginary parts of
the matrix are shown. The value of each
matrix element is derived from the
results of thousands of two-photon 
correlation experiments (simulated
experiments for the theoretical matrix.)
The experimental matrix indicates that
our source can output a state close to a
maximally entangled one. Written out
“longhand,” the density matrix describ-
ing the state |ΦΦ+〉 is

ρ = |ΦΦ+〉〈ΦΦ+|
= 1/2( |HH〉〈HH| + |VV〉〈VV|

+ |HH〉〈VV| + |VV〉〈HH|  )    .

The first two terms, which lie on the
diagonal of the matrix (dashed line),
give the probability of the result (for
example, 50% HH and 50% VV). The
other two terms describe the quantum
coherence between the states |HH〉 and
|VV〉. For a classical mixed state (such
as the source S2 described in the text),
these off-diagonal terms in the density
matrix would equal zero. Notice that all
coefficients in this density matrix are
real, so that all terms in the imaginary 
part of the matrix should be zero.



are involved. Any mixed quantum state
can be thought of as an incoherent
combination of pure states: The system
is in a number of possible pure states,
each of which has some probability
between 0 and 1 associated with it
(rather than the complex numbers
defining the probability amplitudes
that specify a particular superposition
of pure states). A reasonable measure
of the entanglement of such a mixed
state is to take the average value of
the entanglement (for example, as
measured by the concurrence dis-
cussed in the box on this page) for all
those pure states. 

One must, however, use this proce-
dure carefully because the decomposi-
tion of the mixed state into an 
incoherent sum of pure states is not
unique. For this “average entangle-
ment” to make any sense as a measure
of entanglement of the mixed state,
one must use the decomposition for
which the average is a minimum. 
The square of this minimized quantity
is called the “tangle.” It has a value 
of zero for entirely unentangled, 
separable states and of unity for com-
pletely entangled states. 

Figure 8 shows how those two
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Characterizing Mixed States

It is convenient to characterize the extent of entanglement and the degree
of purity of a mixed state using two derived parameters: the tangle and the
linear entropy. The linear entropy, which gives a measure of the purity of
the state, derives from the von Neumann entropy. The latter is given by the
formula S = –Tr{ρlog2(ρ)}, where ρ is the density matrix. Here Tr{M} is
the trace of a matrix (that is, the sum of terms on the diagonal) and log2 is
a logarithm base 2, which can be defined for matrices via a power series.
The von Neumann entropy is zero for a pure state. When the von Neumann
entropy has its maximum value (equal to the number of qubits), the state is
completely random, with no information or entanglement being present.
The linear entropy, defined for two qubits as SL = 4/3(1 – Tr{ρ2}), is simi-
lar to the von Neumann entropy, but it is easier to calculate. Specifically, it
equals 0 for a pure state and has a maximum value of 1 for completely 
random states. 

Characterizing the degree of entanglement is more difficult. Mathematically
speaking, if one decomposes the density matrix into an incoherent sum of 
pure states, that is, ρ = Σi pi |ψi〉 〈ψi|, where 0 ≤ pi ≤ 1 and ∑i pi = 1, 
then the average entanglement is E

–
= ∑i piC(ψi) = 1, where C(ψi) is the

concurrence of the pure state |ψi〉 (defined in the box on page 56). It is very
important to find the decomposition for which E

–
takes its minimum possible

value; otherwise, one can infer a nonzero entanglement for states such as the
completely mixed state, which is certainly not entangled! Fortunately, the way
to do that decomposition has been worked out for two qubits. Characterizing
the degree of entanglement for three or more qubits remains an unsolved
research problem.
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Figure 8. The Map of Hilbert Space 
The amount of entanglement (or the
tangle) is plotted against the degree 
of purity (represented by the linear
entropy) for a multitude of two-photon
states created and measured at 
Los Alamos. Each state is represented
by a black spot with error bars.
The boundary line, which represents
the class of states that have the maxi-
mum possible entanglement for a given
value of the linear entropy, was first
determined theoretically but then 
confirmed by a numerical simulation 
of two million random density matrices.
Important states, such as those that are
maximally entangled or completely
mixed, are indicated. Efforts are under
way to create states that lie along 
the boundary line.



parameters—tangle and linear
entropy—can be used to create a sim-
plified map of Hilbert space for two-
photon states. The crosses 
(with error bars) are the states we
have created and measured experi-
mentally. Most display a high degree
of entanglement. States created by
other technologies can be plotted on
such a diagram as well. 

Conclusions

Entangled states arise naturally
whenever two or more quantum 
systems interact. In fact, one of the
prevalent theories of nature is that 
the universe is really one big, vastly
complicated entangled state, described
by the “wave function of the uni-
verse.” Despite their seeming ubiqui-
ty, however, entangled states are not
generally observed in the world at
large. Only relatively recently have
scientists developed the means to con-
trollably produce, manipulate, and
detect this most bizarre quantum phe-
nomenon. Initially, the fascination was
limited to experimental studies of the
foundations of quantum mechanics,
especially the notion of nonlocal
“spooklike” influences (to quote
Einstein). However, even more recent-
ly, has come the realization that entan-
glement could lead to enhanced—
sometimes vastly enhanced—capabili-
ties in the realm of information pro-
cessing.

This paper has discussed how
entangled states could be a key
resource in applications as diverse 
as cryptography, lithography, and
metrology because they enable feats
beyond those possible with classical
physics. In addition, the quest to 
create a quantum computer has
pushed entangled systems to the fore-
front of quantum research. Part of the
power of a quantum computer is that
it creates entangled states of N qubits
so that information can be stored and

processed in the 2N-dimensional qubit
space. Quantum algorithms have been 
developed that would manipulate 
the complex entangled state and make
use of the nonclassical correlations to
solve problems more efficiently than
could be done classically. Scientists
who work on developing quantum
computers are envisioning systems of
thousands of entangled qubits. 

We don’t know whether we will be
able to create or maintain such a com-
plex entangled state. At this point, 
we won’t even claim to know whether 
we will fully understand that state if 
it is created. More research is needed
before those questions can be
answered. All that we can say now 
is that the once-hidden domain of
quantum entanglement has broken
into our classical world. �
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The battle between cryptographers, who encrypt messages, 
and cryptanalysts, who break those codes, has raged for cen-
turies. As quantum computing promises to help cryptanalysts
break many of the encryption methods used today, quantum cryp-
tography promises to keep our secrets safe forever.



A New Face for Cryptography
Jane E. Nordholt and Richard J. Hughes
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Cryptography, the mathematical science 
of secret communications, has had a long
and distinguished history dating back to 

the time of the ancient Greeks. It is a subject noted
for the never-ending struggle for one-upmanship
between code makers and code breakers, a struggle
in which the future of nations has literally been 
at stake. The code breakers’ need to read another
party’s secret communications has been a 
tremendous force driving the development of new
information-processing technologies. The code 
makers have responded by using those new 
technologies to develop more complex methods 
for ensuring the security of communications. 

The latest round in this struggle seems set to be
played out in the world’s physics laboratories, with
the combatants drawing upon fundamental princi-
ples of quantum physics, principles that were only
of academic interest until about 15 years ago. 
The code breakers believe that a large-scale quan-
tum computer—a device that uses the nonclassical
aspects of quantum systems to manipulate 
information—could defeat the most widespread
cryptosystems in use today. They are pushing 
the physics community to develop such a computer,

which necessarily involves controlling atoms and
photons in ways that were barely dreamed of—until
recently. Meanwhile, the code makers are ready for
battle and are already exploiting quantum mechanics
in a new code-making technology—quantum key 
distribution (QKD)—that could counter the quantum
computing threat. 

Classical Cryptography

The main goal of cryptography is to allow 
two parties (conventionally referred to as “Alice”
and “Bob”) to communicate while simultaneously
preventing a third party (“Eve”) from understanding
those communications. Alice and Bob’s messages
should remain secret even when Eve is able to 
passively monitor the exchanges. (A more intrusive
Eve might want to prevent Alice and Bob from 
communicating at all, but such a denial-of-service
attack is a different type of communication problem
that we will not consider here.) Cryptography 
provides Alice with the means to render her 
messages to Bob in a form that is indistinguishable
from random noise but that, nevertheless, allows
Bob to recover the original message.



This process of encryption (by
Alice) and decryption (by Bob) can be
accomplished if the two parties share
a string of randomly generated binary
bits known as a cryptographic key. In
a system called the “one-time pad,”
Alice and Bob must have identical
copies of the key. (How they get the
key will be discussed later). As seen
in Figure 1, Alice adds the key to her
message, bit by bit, using the binary
exclusive OR- (XOR-, ⊕) operation,
which is is equivalent to addition
modulo 2. Mathematically, the XOR
operation is defined as 

0 ⊕ 0 = 0  ,
0 ⊕ 1 = 1  ,
1 ⊕ 0 = 1  , and
1 ⊕ 1 = 0  . (1)

Alice’s encrypted communication at
this point is indistinguishable from

random noise. Alice sends this mes-
sage to Bob, who takes his copy of
the key and subtracts it from the mes-
sage, again using an XOR-operation.
The original script is recovered.
Provided a key is used to encipher
only one message, the one-time pad
encryption process is provably secure.
In fact, it is the only completely
secure cryptographic system. 

The one-time pad is an example of
a symmetric-key system (symmetric
because Alice and Bob have the same
key), and it requires a key that is as
long as the message. In another type
of symmetric key system, Alice and
Bob use a short key to seed a high-
quality random number generator of
which they have identical copies.
They then need to share fewer initial
key bits in order to encrypt and
decrypt large messages. In the Data
Encryption Standard (DES)—a sym-

metric-key algorithm that was adopted
as a United States government stan-
dard in 1977—the key length is
56 bits. 

The security of all symmetric-key
cryptographic systems rests entirely
on the secrecy of the shared key
because the structure of the crypto-
graphic algorithm used by Alice and
Bob is public knowledge. Certainly,
the eavesdropper Eve understands
and can implement the decryption
algorithm. Should Eve obtain the key,
she could immediately read Alice and
Bob’s messages. Without the key, Eve
must attempt a mathematical attack
on the encrypted message (or parts
thereof) in order to crack it. In a
properly designed symmetric-key
cryptosystem, no attack should be
more efficient than an exhaustive
search over all possible keys. 

Consider, for example, the 56-bit
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Alice's message
�

Key

Encrypted message

 1001  0000  0110  1001
 
 1000  0100  0101  0001 

 0001  0100  0011  1000

Alice

Bob

XOR operation, � :   

0 � 0 = 0 :  0 � 1 = 1  :  1 � 0 = 1  :  1 � 1 = 0

(a) Encryption, One-Time Pad

(b) Decryption

Encrypted message
�

Key

Original message

 0001  0100  0011  1000
 
 1000  0100  0101  0001 

 1001  0000  0110  1001

Classical communication
channel

Figure 1. A Symmetric-Key
Cryptography System: The One-
Time Pad
(a) Alice, the sender, first generates a
string of binary bits (the key) that is as
long as her binary message. Then she
applies the XOR operation—bit by bit—to
the key and her message, and sends the
encrypted string to Bob over an open
communications channel. (b) Bob, the
receiver, uses the same key as Alice to
decrypt the message by the same XOR
operation, applied bit by bit. His
decrypted message is identical to the
original message sent by Alice. Because
the value of each key bit is random, the
message cannot be recovered without
the key. As long as Alice and Bob use
the key only once to encrypt and decrypt
one message, this one-time pad system
is absolutely secure, but distributing 
the secret keys remains a problem.
(c)–(e) This series of photographs 
shows an aerial view of the St. Louis
International Airport before encryption,
as encrypted by Alice, and as decrypted
by Bob. Whereas Alice’s encrypted 
photo is indistinguishable from random
noise, Bob is able to reproduce the 
original faithfully.

(c) Original (d) Encrypted (e) Recovered Original



DES key. Because there is a choice of
either 0 or 1 for every bit in a binary
key, there are 256 (or nearly 1018) 
possible DES keys. A desktop com-
puter testing a million keys a second
would require more than two thousand
years to search the entire key space.
But the phenomenal increase in 
computational speed and capability
has made the 56-bit key vulnerable.
Today’s supercomputers can search all
possible keys in a matter of hours. 

The simple solution is to use
longer keys. Adding a bit to the key
length doubles the search time,
whereas doubling the key length
makes the search problem exponen-
tially harder. In the forthcoming
Advanced Encryption Standard
(AES), the key length will be up to
256 bits, in which case a search of 
the entire key space would be so com-
putationally demanding that it would
not be feasible on any computer 
system within the useful lifetime of
the information. 

The Key Distribution Problem.
A DES-type cryptographic system
reduces the act of communicating a
long secret (the message) to that of
creating and sending a short secret
(the key). But the central issue within
any system is that any information
about the key must remain out of the
hands of unwanted parties. This latter
requirement creates what is known as
the key-distribution problem. 

Traditionally, cryptographic keys
were distributed by trusted couriers
immortalized in spy movies as
strangers in trench coats handcuffed to
locked briefcases. But the infrastruc-
ture required to manage the key mate-
rial makes this type of distribution
impractical in our computer-driven,
global community. Picture the logis-
tics nightmare if a courier had to
deliver a cryptographic key every
time Alice wanted to use her credit
card over the Internet—and imagine
the added cost! In some cases, courier

key distribution is even impossible,
such as when Bob is not a person but
a satellite in Earth’s orbit.
Furthermore, the existence of the key
material before delivery by courier
introduces an insider threat, in that the
key 
material could be copied and delivered
surreptitiously to Eve. 

About 30 years ago, researchers at
Britain’s Government Communications
Headquarters (GCHQ), and later (inde-
pendently) in the United States, found
a new, more convenient way to
securely distribute cryptographic keys.
The system is known generically as
public-key cryptography. One public-
key protocol begins when Bob gener-
ates two very large prime numbers, p
and q, which are multiplied to form the
especially large number N. He then
selects an integer g, and uses the num-
bers p, q, and g to generate a fourth
number, d. The two numbers (N, g)
constitute Bob’s public key, which he
makes widely available. The number d
constitutes Bob’s private key, which he
keeps secret. (The protocol is dis-
cussed in greater detail in the box
“Public-Key Cryptography: RSA” on
the next page.) 

When Alice wants to send an
encrypted message to Bob, she grabs a
copy of his public key and uses it in 
an algorithm that mathematically
scrambles her communication. The
algorithm, however, is a clever one-
way operation: Bob’s public key (N, g)
cannot be used to unscramble Alice’s
encrypted message. Instead, one needs
the secret number d from Bob’s private
key to decrypt. Given only N, it is
extremely difficult to find the prime
factors p and q that are needed to 
generate d; hence, the system is 
considered secure. 

Because the public-key cryptogra-
phy system is asymmetric—only Bob
needs to have a secret key—it has
become the enabling technology for
electronic commerce. Alice can grab
the public key from the Bob.com 

website and safely encrypt and send
her credit card number. In addition, 
public-key encryption also provides a
means for Alice to authenticate her
transaction. 

But public-key cryptography has
its downside. Because of the computa-
tional difficulty in calculating asym-
metric keys, Alice and Bob use it only
to produce and distribute a symmetric
key that they then use for the bulk of
their discussions. More disturbing is
the lack of proof that the methodology
is secure. A clever person could come
up with a new factoring algorithm that
allows finding the secret number d,
thus making public-key cryptography
obsolete. 

In 1994, Peter Shor of AT&T did
invent such an algorithm. If imple-
mented, that algorithm would under-
mine the public-key cryptography in
use today. Fortunately, Shor’s algo-
rithm must be run on a quantum com-
puter, which is currently unavailable
and will probably remain so for many
years. 

Public-key cryptography clearly
has a place where security need not be
guaranteed to last for years. Because
it is not provably secure, however,
and because a quantum computer may
render it useless in the future, a better
system is needed for highly valuable
data such as government or trade
secrets. That better system is quantum
cryptography.

Quantum Cryptography

Quantum cryptography is a type of
symmetric-key distribution that
allows Alice and Bob to create and
share a secret key, while Eve is pre-
vented from obtaining any more than
a tiny fraction of one bit of informa-
tion about the final key’s binary
sequence. The secret key can actually
be used in any symmetric encryption
method desired. Because quantum
cryptography is used to send these
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key bits, it is more correctly called
quantum key distribution (QKD).
Adding to the security of a QKD 
system is the fact that any attempt to
steal or copy a key can be detected,
thus revealing information about the
security environment. 

The quantum part of quantum
cryptography comes from the trans-
mission and reception of single 
photons. In addition to keeping 

an eavesdropper at bay (primarily
because a photon cannot be split 
or copied reliably), quantum 
cryptographic systems exhibit strange
quantum mechanical behaviors that
are not normally observed in the
classical world of everyday 
experience. The best example of 
such behavior occurs in our fiber-
based quantum cryptographic system,
in which we use the interference of 

single photons with themselves 
to transmit information. 

Before describing how a photon
interfering with itself helps us
encrypt messages, we will present 
an overview of the steps involved 
in executing a secure exchange of
messages and then describe a simple
protocol. Protocols are the rules used
for the quantum mechanical and 
conventional transmissions at 
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Public-Key Cryptography: RSA

Public-key cryptography is an asymmetric key-distribution
system, wherein Bob generates two keys: a public key,
which he makes available to anyone, and a private key,
which he keeps secret. Alice uses the public key to encrypt
her message, which she then sends to Bob, who uses 
his private key to decrypt that message. Perhaps the most
widely used public-key cryptography algorithm is RSA,
which was invented in 1978 by Ron Rivest, Adi Shamir,
and Leonard Adleman and was named for its inventors.
The RSA algorithm uses two keys that are constructed 
as follows:

• Bob generates two prime numbers, p and q, 
which are typically very large (several hundred 
bits in length). 

• He calculates the product, N = pq, known as the 
modulus. 

• He calculates Euler’s quotient function Φ(N), 
which is simply the number of integers less than 
N that are coprime* to N. If p is a prime number, 
every number less than p is coprime to it, so 
Φ(p) = p – 1. Since the modulus N = pq is the 
product of prime numbers, Φ(N) = (p – 1)(q – 1).
Let Φ(N) be designated by η. 

• Bob chooses an integer g such that g < N, and g
has no factors in common with η. 

• Bob calculates d = gΦ(η)–1 mod η, where mod η
is the modulus operation.†

Bob’s public key is (N, g). His private key is the number d.

* Two integers are coprime if they share no common divisors except 1.
† For an introduction to modular arithmetic, see the article “From
Factoring to Phase Estimation” on page 38.

When Alice wants to send a message to Bob, she first 
represents her message as a series of numbers. To
encrypt, she grabs Bob’s public key (N, g) and uses it in
the following mathematical transformation: 

c = mg mod N, (1)

where m is a number representing a piece of her message.
She sends the new number c off to Bob, who uses his pri-
vate key (N, d) to perform the operation 

m = cd mod N  , (2)

thereby recovering Alice’s number. 

Public-key cryptography is based on a theorem by Euler,
which states that xΦ(y) = 1 mod y, for any integer x that
is coprime to the number y. The number d was chosen
such that d = gΦ(η)–1 mod η, or dg = gΦ(η) mod η, which
by Euler’s theorem becomes dg = 1 mod η. Subtracting 1
will result in dg – 1 = 0 mod η. 

The last statement indicates that the number dg – 1 is
evenly divisible by η, so that dg – 1 = kη, where k is an
integer. In decrypting the message, Bob has

cd mod N = (mg)d mod N ,
= m (m(dg–1) mod N)  , and
= m (mkη mod N)  . (3)

But η = Φ(N). By Euler’s theorem, mΦ(N) = 1 mod N. Thus,

cd mod N = m (1)k mod N , and
= m mod N . (4)

In other words, cd mod N = m, so that the decryption
algorithm recovers Alice’s message.



the heart of QKD. 
A QKD Session. To perform QKD,

Alice and Bob communicate in two
different ways. The first is over a
quantum channel, which allows Alice
to reliably send single photons to Bob.
While Eve may attempt to breech the
quantum channel, her tampering can
be detected. The second means of
communication is an ordinary, public
channel assumed to be monitored by
Eve. Alice and Bob use this open
channel to construct their secret key,
implement any of several error-
correction techniques, and coordinate
a “privacy amplification” scheme that
effectively prevents Eve from gaining
any knowledge about the final key. 
In all, six steps are implemented in a
QKD session. These are summarized
in the box to the right.

As a first step, Alice and Bob
authenticate their communications;
that is, they verify each other’s 
identity. If this step is ignored, Eve
can perform a “man-in-the-middle”
attack and convince Alice that she 
is Bob, and Bob that she is Alice, 
in which case no form of key 
distribution or encryption can 
prevent Eve from reading all of 
Alice and Bob’s communications. 

After authentication, Alice and
Bob begin their QKD session. First,
each generates a random bit stream.
Alice then uses a QKD protocol, such
as BB84 (discussed in the next sec-
tion), that specifies how she is to
encode each bit as the quantum state
of a single particle. For example, she
may use the specific polarization state
of a single photon to encode for
either a 0 or a 1. Then, Alice would
send a stream of polarized photons to
Bob, who follows the protocol in
determining how to measure the
polarization and hence deduce a bit
sequence. Because of the way the
protocol works, Alice and Bob can
have a public conversation and select
an overlapping subset of bits without
revealing to each other the value of

those bits. 
For example, if Alice’s random

sequence is 0111 1010 1001 and as a
result of his measurements Bob
obtains the sequence 1001 1100 0100,
then the protocol provides a means
for Alice and Bob to know—without
specifically telling each other—that
the fourth, fifth, eighth, and eleventh
bits form a common subsequence of
1100. This subsequence is called the
“sifted” key. 

In the real world, hardware is
noisy, and transmission media are
lossy, so the sifted key will contain
some errors. Alice and Bob continue
their public conversation and create a
“reconciled” key, in which those
errors are removed. During this
process, some information about the
sifted key becomes available to any
potential listener (Eve). But Alice and
Bob can calculate the maximum
information Eve could have about
their reconciled key, and using pri-
vacy amplification, reduce Eve’s
information to substantially less than
one bit. The result is a secret key
known only to Alice and Bob. The

one remaining step before closing the
session is to save a few key bits and
thereby have a means to authenticate
the next QKD session. 

The BB84 Protocol. In 1984,
Charles Bennett and Gilles Brassard
published a paper describing how
orthogonal and nonorthogonal quan-
tum states could be used to construct
a cryptographic key. Known today as
BB84, the protocol is at the heart of
our experimentally realized QKD sys-
tems. In the free-space version, Alice
encodes random bit values in the
polarization states of photons and then
sends the single photons to Bob over
the quantum channel. Bob’s measure-
ment of the photon’s polarization and
subsequent communication with Alice
over a public channel allow the two
parties to construct a sifted key. 

A stylized version of the BB84
protocol is shown in Figure 2. (The
box “Photons, Polarizers, and
Projections” on page 76 also provides
some background material for this
section.) Alice generates a random
sequence of bits and then chooses—
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Six Steps to a QKD Session

Authenticate. Over an open communication line, Alice confirms she is 
talking to Bob, and Bob confirms he is talking to Alice. 

Use a quantum protocol. The protocol dictates how Alice is to encode her
random bit stream as a quantum state of a single photon. Bob measures
photons according to the protocol. 

Construct the sifted key. Alice and Bob use an open line to discover which
photons were sent and measured in the same basis. The bit values associ-
ated with that subset of photons form the sifted key. 

Construct the reconciled key. Over the open line, Alice and Bob find and
remove errors from the sifted key to make the reconciled key.

Construct the secret key. Alice and Bob use privacy amplification to con-
struct a secret key from the reconciled key. An eavesdropper has essen-
tially no information about the bits in the secret key. 

Save some bits. A few secret bits are retained to enable authenticating future
QKD sessions. 
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Alice

Classical 
communication 
channel

V

+45°

–45°

H

V H

Bob

A PBS reflects V-polarized photons 
and transmits H-polarized photons.
Photons polarized at ±45° can go
either way.

(d) Bob inserts an HWP to
choose the diagonal basis
or removes it to choose the
H/V basis

(c) Alice inserts an HWP to
choose the diagonal basis
or removes it to choose the
H/V basis

(b) Bit value selection using 
an H- or V-polarizer

(a) Attenuated laser source

PBS

HWP

HWP

H-Detector,
bit = 0

V-Detector,
bit = 1

PBS

RNG

RNG

RNG

The BB84 protocol works because Alice randomly chooses to
encode the photons in two, nonorthogonal bases. (a) An atten-
uated laser produces close to single photons. (b) Alice uses a
random number generator (RNG) to select a bit value: 0s are
encoded as horizontally polarized photons and 1s as vertically
polarized photons (c) A second RNG selects the basis. To
choose the H/V basis, Alice does nothing, (the photons are
already either |H〉 or |V〉). To choose the diagonal (–45/+45)
basis, she inserts a half-wave plate (HWP) that rotates the
polarization by –45°, so that |H〉 goes to |–45〉 and |V〉 to |+45〉.
(d) Bob uses an RNG to select his measurement basis, choos-

ing either to do nothing (H/V) or to rotate the photon by +45°
(–45/+45). He detects photons using an H/V oriented polarizing
beam splitter (PBS), which transmits horizontally polarized
photons but reflects vertically polarized ones (see inset).
Photons polarized at ±45° have an equal probability to go to
either detector. Table I shows that, when Alice and Bob choose
the same basis, they know that their bit values coincide. When
they choose different bases, their bit values are randomly 
correlated. At the end of the session, Bob and Alice openly
compare their bases for each measurement. They keep only
those bits that were sent and measured in the same basis.

Diag.

Table I. Details of the BB84 Protocol

Sender (Alice) Receiver (Bob) Joint Action

Probability (%)
Alice's
Basis Bit Polarization

Bob’s
Basis

Resulting
Polarization H-Det. V-Det. Bit

H/V 0 H H/V H 100 0 0 Keep bit

H/V 1 V H/V V 0 100 1 Keep bit

H/V 0 H Diag. +45° 50 50 0 or 1 Discard bit

H/V 1 V Diag. –45° 50 50 0 or 1 Discard bit

Diag. 0 –45° H/V –45° 50 50 0 or 1 Discard bit

Diag. 1 +45° H/V +45° 50 50 0 or 1 Discard bit

Diag. 0 –45° H 100 0 0 Keep bit

Diag. 1 +45° Diag. V 0 100 1 Keep bit

Figure 2. The BB84 Protocol



also at random—between one of two
polarization bases, either the horizon-
tal/vertical (H/V) basis, or the diago-
nal (–45°/+45°) basis. If she chooses 
the H/V basis, the bit values of 0 are
encoded as horizontally polarized pho-
tons, and bit values of 1 are encoded
as vertically polarized photons, that is,
0 = |H〉 and 1 = |V〉. Similarly, if she
chooses the diagonal basis, 0 and 1 bit 
values are encoded as 0 = |–45〉 and 
1 = |+45〉. She sends the stream of
polarized photons off to Bob. 

At his end, Bob chooses at random
to measure polarizations in either 
the H/V or diagonal basis. As shown
in Figure 2, he uses a special 
dual-detector system. If he chooses
the H/V basis, then photons in the
state |H〉 go through to his H-detector,
while those in the state |V〉 are
reflected to the V-detector. Photons in
the |–45〉 or |+45〉 state go randomly to
either detector. If Bob measures in the
diagonal basis, then his setup directs
|–45〉 photons to the H-detector, |+45〉
photons to the V-detector, and |H〉 or
|V〉 photons to either detector with
equal probability. 

Table I shows how the results dif-
fer depending on which polarization
states were sent and how they were
detected. When Alice and Bob used
the same basis, a photon hit on Bob’s
H-detector means that Alice had a bit
value of 0; a hit on his V-detector, that
she had a bit value of 1. If the bases
differ, there is no such correspon-
dence. Bob and Alice therefore use
the public channel and simply com-
pare the sequence of bases. They keep
the corresponding bits when the bases
agree and disregard the bits when they
don’t agree. In this way, they can
build a sifted-key sequence over a
public channel without ever revealing
the value of the individual key bits. 

Because Alice and Bob have a 
50 percent chance of choosing the
same basis, in an ideal implementa-
tion of BB84, half of the photons are
used to create the sifted key. In prac-

tice, the efficiency is much less
because the real world unavoidably
introduces errors into the sifted-key
sequence—polarizers are not perfect,
photons do not always reach Bob,
and detectors do not always fire
when hit with a photon and some-
times fire on their own. Alice and
Bob must check and correct their
sequence for errors.

Error Correction. One example of
a simple error-correction scheme is
illustrated in Figure 3. Alice tells Bob
the parity of each of her bytes, that is,
whether the sum of each 8 bits of the
sifted key is even or odd. Bob then
checks the parity of his bytes. They
keep those bytes that have the same
parity and initiate a 20-questions-type
deductive process to find the problem
bit when the parity differs.1 Because
parity checks can only find an odd
number of errors in a bit sequence, in
practice, sifted bits are shuffled and
then checked for errors several times.
All errors must be eliminated to a
high degree of certainty. If Alice and
Bob’s keys differ by even a single bit,
the keys will be unusable. 

Alice and Bob make their byte
comparisons over the open channel,
so Eve now has—at a minimum—
information about the parity of each
retained byte. To eliminate even this
limited knowledge on Eve’s part,
Alice and Bob can agree to drop the
last bit of each byte. In addition, they
have to sacrifice some key bits to find
the errors in their sequences. The 
reconciled key is therefore shorter
than the sifted key. While undertaking
the error correction process, however,
Alice and Bob obtain an estimate of
the bit error rate (BER), which is 
the number of errors they had in their
sifted sequences. Alice and Bob use
the BER and knowledge of the quan-
tum mechanical and physical princi-
ples of the QKD technique to put a
rigorous upper bound on the possible
information that Eve may have about

their bit sequences. 
Privacy Amplification. In this

step, Alice and Bob do an XOR oper-
ation on sequences of bits from the
reconciled key to produce fewer, but
brand new, bits. The amount of com-
pression required depends on their
estimate of Eve’s acquired knowledge. 

For example, suppose Alice and
Bob share a reconciled sequence con-
sisting of six bits, a, b, c, d, e, and f,
and they suspect that Eve knows three
of the six bits. Alice and Bob make
two new bits out of the original six by
doing the following operation: 

a ⊕ b ⊕ c ⊕ d = Bit 1  , and
c ⊕ d ⊕ e ⊕ f  = Bit 2  . (2)

Although Eve may have known
three bits of the reconciled key
sequence, she knows nothing about
the new bits generated by privacy
application. Alice and Bob can apply
this procedure to reduce Eve’s knowl-
edge to less than one bit in a key that
is several hundred bits long and
thereby produce a completely secure
key. In general, if the original
sequence is n-bits long, privacy
amplification will compress it to R(n)
bits, where 

R(n) = – n log2[ζ2 + (1 – ζ)2]  (3) 

and ζ is the BER. 

Foiling Eve. We are now in a 
better position to discuss how the
complete QKD session prevents Eve
from gaining information about the
secret key. First, Eve cannot get any
information about the key over the
open channel; although the BB84 pro-
tocol allows her to know which bits
Alice and Bob had in common, she
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1 Bits that get transmitted correctly are
valuable. Although Alice and Bob could
drop all eight bits of a problem byte, it is
usually worthwhile to winnow through the
byte and retain as many bits as possible.
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Our realization of the BB84 protocol uses the polarization state of individual
photons to encode bit values. But the key feature that prevents an eavesdrop-
per from detecting the polarizations without being noticed is the use of two
nonorthogonal linear polarizations to represent 0 and 1. Rather than preparing
a random sequence of horizontally or vertically polarized photons in the
quantum states ⎥H〉 or |V〉, respectively, Alice (the sender) polarizes photons
in the quantum states ⎥H〉 or ⎥–45〉 when she wants to send a 0 to Bob (the
receiver) and ⏐V〉 or ⎥+45〉 when she wants to send a 1.

We can do a simple experiment to demonstrate the quantum mechanical
properties of nonorthogonal photons. We need just 3 sheets of linearly polar-
izing filters, which are readily available from scientific education kits or sup-
pliers. The filter is made from a material that has an intrinsic transmission
axis for photons (the polarization axis). As shown in Figure A, if randomly
polarized light (for example, sunlight), made up of a large number of photons
goes through a linear polarizer with its axis aligned, say, horizontally, the
photons that emerge are polarized in the state⎥H〉.

We perform our experiment by orienting the first polarizer filter horizontally
and holding it up to sunlight. The light intensity decreases by about 50 per-
cent, which indicates that about half the photons get through. We then place a
second polarizer behind the first and rotate it until no light passes. At that
point, the polarization axes of the two filters are orthogonal to each other,
that is, the polarization axis of the second polarizer is in the vertical direc-
tion. If we place the third filter between the first two with its polarization axis
at –45˚ to the others, we naïvely expect no change in the light transmission,
but suddenly one eighth of the sunlight gets through the stack, even though
the axes of the outer two polarizers are still perpendicular. 

These spooky results are a direct consequence of the quantum properties of
single photons. A linearly polarized photon is described by a quantum
mechanical wave function. Mathematically, it is represented by a “ket” ⎥ψ〉,
which is analogous to an ordinary unit vector in 2-dimensions. Just as a plane
vector can be written in terms of two orthogonal plane vectors, we can express
⎥ψ〉 as a superposition of two orthogonal kets, ⎥φ〉 and⎥φ+90〉, in a two-dimen-
sional Hilbert space, with real (as opposed to complex) coefficients. The ket
⎥φ〉 represents a photon linearly polarized at the angle φ to the horizontal,
while ⎥φ+90〉 represents a photon polarized at the angle (φ + 90°). The orthog-
onal kets are a basis for the Hilbert space. We have

⎥ψ〉 = cosθ ⎥φ〉 + sinθ ⎥φ+90〉  , (1)

where θ is the angle between ⎥φ〉 and⎥ψ〉.  The coefficients in front of the 
kets —cosθ and sinθ—are probability amplitudes. Nature has dictated that the
outcome of a measurement of the photon’s polarization state (for example, by
transmission through a polarizing filter)  is indeterminate—it depends on the
basis (the orientation of the polarization axis) used to make the measurement.
The probability p that a measurement of |ψ〉 yields the result |φ〉 is given by
the expression

p = cos2θ , (2)

that is, p is the square of the probability amplitude in front of the ket |φ〉.

Photons, Polarizers, and Projection
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θθ θθ
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Figure A. Polarizing Filter 
The filter projects photons into polariza-
tion states parallel to its polarization
axis.

Figure B. Decomposition into
Diagonal Basis
A horizontally polarized photon is
expressed in terms of the +45/–45 basis.
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We are now in a position to understand the simple experiment discussed earlier.
The polarization axis of the first polarizing filter is set to be horizontal. 
Equation (1) tells us we can express an incoming photon as a superposition of a
ket that is aligned parallel the polarization axis, that is, φ = 0° and⎥φ〉 =⎥0〉 ≡⎥H〉,
and a ket that is orthogonal to the axis, that is, ⎥φ+90〉 = ⎥90〉 ≡⎥V〉. We have

⎥ψ〉 = cosθ ⎥H〉 + sinθ ⎥V〉 , (3)

where the angle θ is now seen to describe the angle between the incoming pho-
ton’s polarization and the filter’s polarization axis. According to Equation (2),
the probability that a linearly polarized photon passes through the horizontal
polarizer is p = cos2θ, that is, the square of the probability amplitude for the
state⎥H〉. Because photons of all polarizations impinge on the first 
filter, the amount of light that gets through found by taking the average of p over
all angles, that is, (cos2θ) = 1/2. Half the light makes it through the first filter. 

Every photon that makes it through has been projected into the state ⎥H〉. These
photons then interact with the second filter in the stack with polarization axis
aligned at φ = –45°. We express the horizontal photon in the 
diagonal (–45°/+45°) basis as (see Figure B):

⎥H〉 =  cos(45)⎥–45〉 + sin(45)⎥+45〉 = 1/√2  (⎥–45〉 + ⎥+45〉)  . (4)

The probability that a photon passes through the second filter is 
cos2(45) = 1/2, so 1/4 of the sunlight makes it through the two filters. The pho-
tons that emerge are polarized at –45°. The third filter is aligned vertically 
(φ = 90°), so we rewrite the ket ⎥–45〉 in the horizontal/vertical (H/V) basis: 

⎥–45〉 = cos(–135)⎥V〉 + sin(–135)⎥–H〉 = 1/√2 (–⎥V 〉 + ⎥H〉)  .  (5)

The probability that a photon passes through the vertical filter is 
cos2(–135) = 1/2. Again, half the photons make it through the last filter, so in
total one eighth of the sunlight makes it through the stack.

This demonstration of nonorthogonal photon polarizations and polarizers reveals
another important property of photons: All information about the initial polariza-
tion state is lost as a result of the photon-polarizer interaction. For cryptography,
that has an unfortunate implication for someone (Eve) who is trying intercept
the encrypted bit stream. Eve can intercept the photons going to Bob, but unless
she measures the polarization of those photons in the correct basis, she cannot
correlate the results of her measurements with a bit value. With her polarizer set
to –45°, she has a probability to detect photons in the state ⎥–45〉, |H 〉, or ⎥V 〉,
corresponding to bit values of 0, 0, and 1. Her measurement does not reveal
Alice’s bit value, nor does it reveal the original polarization state of the photon.
A certain fraction of the photons she sends to Bob (which she must do to cover
her tracks) will be in error. Thus, by choosing to send a random sequence of
nonorthogonally polarized photons, Alice and Bob assure that Eve cannot
attempt to measure the sequence without introducing detectable errors in their
QKD protocol. 

knows nothing about the values 
of those bits. If Eve is to get bit infor-
mation, she is forced to breech the 
quantum channel by intercepting the
photons and measuring their polariza-
tions. She must then send new 
photons on to Bob in order to cover
her tracks. 

But Eve must know the exact state
of a photon if she is to send a new
one correctly. She cannot, however,
make a deterministic measurement of
the photon’s polarization state
because Alice sends photons in two
nonorthogonal bases. For example,
suppose Eve has a detection apparatus
identical to Bob’s and she detects a
photon in her first detector (bit value
of 0) when she measures in the diago-
nal basis. Did Alice send a photon in
the |H〉, |V〉, or |+45〉 state? Eve has no
idea because, given her measurement
basis, she can detect each of those
states. A hit on Eve’s detector does
not reveal whether Alice sent a 0 or 
a 1; that information “materializes”
only after Alice and Bob compare
bases. In fact, Eve can choose any
type of detection system or measure-
ment strategy and still be uncertain
about the original state of Alice’s
photon. 

One might ask whether Eve can
make copies of Alice’s photon before
making a measurement. Then she
could send the original off to Bob,
save her string of photons (some-
how), and make deterministic polar-
ization measurements after listening
to Alice and Bob compare bases. But
quantum mechanics prevents Eve
from accurately copying an unknown
photon. (See the box “The No-
Cloning Theorem” on page 79.) She
would have to make a deterministic
measurement, but that action would
inevitably reveal her presence to 
Alice and Bob. 

If she were to guess the polariza-
tion state, Eve would have, at best, a
50 percent chance of forwarding the
correct one to Bob. But in making her
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guess, she will necessarily introduce
errors into Alice and Bob’s sifted-key
sequence and, hence, increase 
the BER. When Alice and Bob 
check their sifted-key sequences for
mismatches, they conservatively
assume that Eve caused all the errors.
They make corrections to those
sequences, compute the maximum
information Eve could have about the
reconciled key, and then use privacy
amplification to compress out Eve’s
possible knowledge about their

shared secret strings to substantially
less than one bit. The secret key is
truly secret. 

Experiments

To date, the three major experi-
ments performed at Los Alamos
National Laboratory are free-space,
fiber, and entangled-state QKD sys-
tems. All of the systems were con-
structed from readily available pieces

of equipment, and we were able to
show that a complete QKD session
could be communicated over long dis-
tances and still produce a useful
secret-bit yield. All three systems use
the BB84 protocol.

Here, we describe the free-space
and fiber-based experiments. 
Entangled -state QKD is described 
in the article “Quantum State
Entanglement” on page 52.

Free-Space QKD. In free-space

I disagree with the parity on the last byte.
Here is the parity for its first 4 bits:

0

The 3rd byte looks like this:
First 4 bits ? �? �? �? = 0

Second 4 bits:
First 2 bits: ? �? = 1

Second 2 bits: ? �? = ?

OK, they have 3 bytes each
with these parities:

? �? �? �? �? �? �? �? = 1
? �? �? �? �? �? �? �? = 0
? �? �? �? �? �? �? �? = ?

That’s the same parity I have for those bits,
so the error must be in the last 2 bits. 
Let’s drop them and the last bit of each
sequence for which we revealed parity.

I have the same parity for those bits,
so the error must be in the second 4 bits.

Here is the parity for the first 2 bits:
1

I have three 8-bit bytes
with these parities:

100

Alice’s Sifted Bits (3 bytes)
10110101  01011010  01101001

Alice’s corrected sequence
1011010  0101101 0111

Bob’s corrected sequence
1011010  0101101 0111

Eve’s knowledge
1st: ? �? �? �? �? �? �? = ?
2nd: ? �? �? �? �? �? �? = ?
3rd: ? �? �? �? = ?

Bob’s Sifted Bits (3 bytes)
10110101  01011010  01101011

Eve’s Knowledge
???????? ???????? ????????

OK

Figure 3. A Simple Error-Correction Scheme
Error correction removes single-bit errors from the sifted key. A simple scheme involves checking the parity of each byte (8-bit)
sequence. The parity of a byte is 0 if the number of 1s in the byte is even or 1 if the number of 1s in the byte is odd. In this case,
Alice and Bob start a public conversation to compare the parity of each of their three bytes. Because there is a mismatch,
caused by the seventh bit (indicated in red) in the third byte, they try to locate the problem. They must eliminate all errors, or
else their keys are unusable. Because the conversation takes place over an open communication line, Eve initially gains infor-
mation about the parity of the sifted key. That information, however, can be eliminated if Alice and Bob drop some bits from their
sequence. Relying on her old information, Eve will not understand anything about the new bit sequence.
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QKD, photons are transmitted through
open air. The protocol uses polariza-
tion states, as previously described,
because the atmosphere preserves
polarization over a wide range of pho-
ton wavelengths (including the full
range of visible and infrared light).

The major difficulty is detecting the
single QKD photons from within 
the enormous background of daytime
photons, namely, ≥ 1010 background
photons per centimeter squared, per
second, per angstrom, per steradian
(γ /cm2/s/Å/sr). This problem exists

even at night because the background
from, say, moonlight or the light of
urban areas is still much larger than
the QKD signal. A second difficulty is
dealing with losses due to atmospheric
distortions. We are able to overcome
both of these problems and can distin-
guish the QKD photons from back-
ground photons by using interference
filters that transmit only photons of a
specific wavelength, by carefully 
limiting the field of view, and by using
a clever trick. The free-space QKD
system is shown in Figure 4.

Alice and Bob have identical
copies of the interference filters,
which allow Alice to send photons
at a selected wavelength and Bob to
receive photons only at that wave-
length. The preferred wavelength is
about 772 nanometers, which is in
the infrared and just outside the nor-
mal range of vision. The atmosphere
is highly transmitting for light of
this color, and single-photon detec-
tors with good quantum efficiency at
this wavelength are readily avail-
able. Furthermore, polarization
selection and control components
and diode lasers that produce the
desired wavelength are all easily
obtained. 

A receiver telescope with a 
narrow field of view helps limit
unwanted photons. Behind the tele-
scope is a spatial filter that passes
photons coming from a precise loca-
tion (Alice’s) while excluding all the
others. The telescope must be
employed with care, however. As
anyone who has ever looked at the
twinkling stars knows, the atmos-
phere can make a source of light
appear to move. The magnitude of
the movement varies considerably
with the time of day, the weather,
and the local terrain. If not
accounted for, the atmosphere could
cause Alice to shift rapidly in and
out of Bob’s field of view. Over
short distances, these atmospheric
distortions are not a serious prob-

The No-Cloning Theorem

In 1982, Bill Wootters and Wojciech Zurek applied the linear properties of
quantum mechanics to prove that an arbitrary quantum state cannot be
cloned. Although their argument is entirely general, we will illustrate the the-
orem with polarized photons. Suppose we have a perfect cloning device in
the initial state |A0〉 and an incoming photon in an arbitrary polarization state
|s〉. The device duplicates the photon as follows: 

|A0〉|s〉 → |As〉|ss〉 , (1)

where |As〉 is the device final state, which may or may not depend on the
polarization of the original photon, and |ss〉 refers to the state of the electro-
magnetic field in which there are two photons, each with polarization |s〉.
Suppose that the device can duplicate both the vertical |V〉 and the horizontal
|H〉 polarization, that is, 

|A0〉|V〉 → |AV〉|VV〉 , and (2)

|A0〉|H〉 → |AH〉|HH〉 . (3)

According to quantum mechanics, this transformation should be representable
by a linear operator, which means the operator acts independently on each
orthogonal state in the Hilbert space. Therefore, if the incoming photon has
some arbitrary polarization given by the linear superposition |s〉 = α|V〉 +
β|H〉, the result of its interaction with the apparatus will be a superposition of
Equations (2) and (3): 

|A0〉|s〉 = |A0〉 (α|V〉 + β|H〉) 

= α|AV〉|VV〉 + β|AH〉|HH〉 . (4)

If the apparatus states |AV〉 and |AH〉 are not identical, the two photons emerg-
ing from the apparatus are in a mixed state of polarization; if they are identi-
cal, the emerging two photons are in a pure entangled state, α|VV〉 + β|HH〉.
In neither case does the apparatus produce a final state |ss〉 consisting of two
completely independent photons, each in the polarization state α|V〉 + β|H〉:

|ss〉 = (α|V〉 + β|H〉) (α|V〉 + β|H〉) 

= α2|VV〉 + αβ|VH〉 + βα|HV〉 + β2|HH〉 . (5)

Linearity, therefore, rules out the existence of a device that could faithfully
clone a photon in an arbitrary polarization state. 
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Figure 4. Free-Space QKD
(a) In the BB84 protocol, Alice (the
sender) encodes bits in the polarization
states of single photons either as 0 = |H〉
and 1 = |V〉 or as 0 = |–45〉 and 1 = |+45〉.
The data stream begins with a bright
output pulse from the timing laser,
which sets the timing of the pulse. A few
nanoseconds later, one of the four data
lasers (λ = 772 nm) fires. Each data
laser has its own attenuator, focusing
optics, and polarizer. Each laser outputs
a uniform pulse of the desired bright-
ness in one of the four polarization
states. The output of all four data lasers
is combined by a series of beam split-
ters, which have been carefully arranged
so that the distances between the lasers
and output optics are the same (there-
fore eliminating any timing differences
between the pulses). The final beam 

splitter either directs the photons to a
detector that monitors the average num-
ber of photons per laser pulse or sends
the polarized photons through a narrow-
pass interference filter (to remove any
frequency differences) and a single
mode fiber (to eliminate any spatial
mode differences). The photons that
pass through Alice’s telescope are iden-
tical in every respect except for polariza-
tion. Bob (the receiver) uses spatial
filtering, time-domain filtering, and
wavelength selection to pick out Alice’s
photons from background. His tele-
scope, with a field of view that is nomi-
nally 45 arc seconds (or 220 microradians),
acts as a spatial filter that allows only
photons from Alice’s location to pass.
The photons then pass through an inter-
ference filter (wavelength selection) 

that is matched to the one in Alice’s
transmitter. Photons are sent to a 50-50
beam splitter, which acts as a basis
selector by randomly directing a photon
to one of the two measurement stations.
Each station consists of a polarizing
beam splitter and two single-photon
detectors. A half-wave plate (HWP)
rotates the photon’s polarization before
the –45°/+45° station. A detector must
fire within a set period following detec-
tion of the bright timing pulse (time-
domain filtering). (b) Alice’s compact
optics table and (c) electronics are
shown here. (d) Bob’s telescope peers
out from the door of the mobile trailer
containing all his electronics and optical
systems. Bob (and Alice) can be easily
transported to different sites. Moreover,
one person can operate the system.
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(b) Alice’s Optics Table (c) Alice’s Electronics (d) Bob’s System



lem. Over long distances, Alice 
corrects for atmospheric variations
by observing Bob’s beacon laser and
is thus able to rapidly vary the point 
to which she sends the photons. 

Finally, the clever trick is to send
a bright laser pulse from Alice to
Bob just before a single photon is
sent so there is a known delay
between the photon and the bright
pulse. Bob accepts only photons 
that enter the system approximately
1 nanosecond after the bright pulse.
This time-domain filtering greatly
limits the possibility of a back-
ground photon being detected
instead of a QKD photon. This sys-
tem of multiple filtering techniques
works so well that single QKD pho-
tons can be distinguished from back-
ground even in daylight. 

One issue complicating the free-
space system (as well as the other
systems described below) is that the
photon sources are actually attenu-
ated laser diodes that produce weak
laser pulses instead of true single
photons. (Single-photon sources are
currently too large and exotic for
systems intended for use in the
field.) The number of photons in a
weak laser pulse is governed by
Poisson statistics, and the number 
of photons in each pulse varies. 
The probability P(n) that a pulse
will contain n photons is, 

(4)

where µ is the average number of
photons per pulse. If µ = 1, there is
roughly a 37 percent chance that a
pulse will contain no photons,
37 percent that it will contain one
photon, and 26 percent that the
pulse will contain more than one
photon. 

By adjusting the attenuation,
Alice can choose a specific value of
µ . If she chooses a relatively high µ ,
say, above 1 photon per pulse, each
time more than one photon is sent, it

must be assumed that a clever
eavesdropper would be able to
detect and measure the extra pho-
tons. A great deal of privacy ampli-
fication—concomitant with a large
consumption of reconciled bits—is
needed to keep the system secure, so
overall, the secret bit yield
decreases. If µ is too small, say,
0.05, then most of the time Alice is
sending nothing over the quantum
channel and experimental errors
(such as background light getting
into the receiver, dark counts in
detectors, or even the actions of an
eavesdropper) may dominate. Again,
the secret-bit yield decreases. The
choice of µ is therefore an important
free parameter at Alice’s disposal. 

Our experiments have shown that
the secret-bit yield depends strongly
on atmospheric conditions.
Turbulence along the optical path
between Alice and Bob, for exam-
ple, affects the transmission effi-
ciency. To help show trends in the
data, we construct a pseudo signal-
to-noise ratio, η/C, where η is the
transmission efficiency (obtained by
dividing the number of sifted bits by
µ) and C is the number of back-
ground photons detected by Bob. 

Figure 5 shows data from a free-
space QKD experiment that ran 
successfully at a 10-kilometer sepa-
ration in daylight. The open commu-
nication channel was a wireless
Ethernet. During the numerous
experimental runs, Alice would send
106 laser pulses over a 1-second
period. The value of µ was typically
set between 0.1 and 0.8. 

The experimental run labeled
“Sample” in Figure 5 is a typical
example. Approximately 22 percent
of the pulses had a single photon 
(µ = 0.29). After comparing Alice
and Bob’s bases, we constructed a
sifted key of 651 bits. Following
error correction, calculation of the
BER, and privacy amplification, we
obtained a secret key consisting of

264 bits, which is sufficient for the
new AES. Note that the secret-bit
yield can be substantially higher at
night (high η/C), because the back-
ground is reduced. 

Our free-space system is a pre-
liminary prototype for a system that
could be flown on a spacecraft.
Because the atmosphere has an
effective thickness of only a few
kilometers if one were to look
straight up, our results are a good
indicator of the feasibility of
ground-to-satellite free-space QKD. 

Fiber-Based QKD. The polariza-
tion state of a photon is not pre-
served in conventional optical
fibers. That is why another physical
property that could express the
desired quantum mechanical proper-
ties for QKD had to be found in
order to implement a fiber-based
system. 
The solution was to have a photon
interfere with itself after it travels
down two paths of a twin Mach-
Zehnder interferometer setup. 

The concepts underlying the
fiber-based QKD scheme are illus-
trated in Figure 6. Briefly, quantum
mechanics tells us that a single 
photon entering a Mach-Zehnder
interferometer behaves as if it has
taken both paths through the instru-
ment. The entrance beam splitter
places the photon in a quantum
mechanical superposition, with a
component that describes a photon
traversing the upper path and a 
component that describes the photon
traversing the lower path. The two 
components have a definite phase
relationship and can interfere with
each other. 

As seen in the figure, Alice 
can introduce a phase shift φA to 
the photon on one arm of the 
interferometer, while Bob can intro-
duce a phase shift φB on the other.
Depending on the phases set by 
both Alice and Bob, the interference
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at the exit beam splitter is such that
the photon has a definite probability
to hit either of two detectors. The
probability PU that the photon hits
the upper detector is given by 

(5)

whereas the probability PL that 
the photon hits the lower detector 
is given by 

(6)

We make use of these relations to
implement the BB84 protocol. Alice

chooses at random between two bases,
X and Y. If she chooses the X-basis,
then for a bit value of 0 or 1, she sets φA
= 0° or 180°, respectively.  If Alice
chooses the Y-basis, then she chooses φA
= 90° or 270° for bit values of 0 or 1,
respectively. At his end, Bob sets his
phase angle φB to 0° if he is in the X-
basis and to 90° if he is in the Y-basis.

Table II summarizes Alice and
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Figure 5. Data from a 10-km Free-
Space QKD Experiment
(a) Alice was located halfway up
Pajarito Mountain, in New Mexico, while
Bob was 10 km away, at a Los Alamos
lab site. (b) The bright red dot near the
center of the picture is a spotting laser
sent through Alice’s telescope. It was
used to optically align the transmitter
and receiver for the quantum channel.
(c) Data from the experiment show the
dependence of the secret-bit yield (nor-
malized to the number of sifted bits) on
the average number of photons per
pulse µ and on the pseudo signal-to-
noise ratio η/C (discussed in the text).
Each vertical column corresponds to an
experimental run in which Alice sent 106

polarized photons in 1 s.The flat, black
regions of the graph are areas for which
no data are available. With favorable
atmospheric conditions or low back-
ground (high η/C), we can run at lower µ
values and still obtain a high bit yield.
Poorer conditions (low η/C) require higher
µ values and result in a lesser yield.
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Bob’s choices and shows the value of
the probabilities PU and PL, given the
various combinations of φA and φB.
Because we are implementing BB84,
Table II is essentially the same as
Table I. When Alice and Bob choose
the same basis, a photon representing
Alice’s 1 always goes to the upper
detector, and a photon representing
her 0 always goes to the lower. If
Alice and Bob use different bases, 
the photon has equal probability to
emerge from either port, and Bob has
no information about what bit value

Alice has sent. At the end of the 
session, Bob calls Alice on the open
communications line, and the two
compare which bases they used for
each photon. They keep the bit values
when the bases agree and discard 
the other bits. 

In the scheme discussed above, a
single Mach-Zehnder interferometer
stretches between Alice and Bob. In
practice, that is a bad idea. The pho-
ton needs to maintain phase coherence
as it propagates down the two optical
fibers that make up the long arms of

the interferometer. Photons often
experience random phase shifts as
they go through long fiber-optic
cables, and because the shifts in one
arm are independent of those in the
other, the interference condition at 
the exit beam splitter changes in a
random fashion. Furthermore, having
two dedicated fibers would be expen-
sive to operate in the real world. 

A better idea is for Alice and Bob
each to have a Mach-Zehnder interfer-
ometer, with the two connected by a
single long fiber—see Figure 7. 
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In a Mach-Zehnder interferometer, a photon is placed in a
superposition of two states by the entrance beam splitter. It
travels down both arms simultaneously, and interferes with
itself at the exit beam splitter. In the conceptual fiber-based
QKD system illustrated here, a phase shifter is placed in
each arm of the interferometer. Alice randomly chooses a bit
value and a basis and sets the angle of her phase shifter
according to her choices (see Table II below). Bob sets the

angle of his phase shifter according to his basis choice.
The table shows the probability that Bob detects a photon 
in a given detector. When Alice and Bob use the same basis
for sending and measuring, a hit in Bob’s lower detector
means that Alice sent a bit value of 0, whereas a hit on the
upper detector means she sent a 1. Because there is no
such correlation when Alice and Bob use different bases,
those bit values are discarded.

Phase
shifter

Entrance beam splitter

Exit beam splitter

Mirror

U

L

Single-
photon
source

A

Phase
shifter

Long fiber-optic line

Alice Bob
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Table II. Fiber-Based QKD

Sender (Alice) Receiver (Bob) Action

Probability (%)

Basis Bit
Phase  A
      (°)

Phase  B
      (°)Basis PL PU Bit

  X 0 0 X 0 100 0 0 Keep bit

  X 1 180 X 0 0 100 1 Keep bit

  X 0 0 Y 90 50 50 0 or 1 Discard bit

  X 1 180 Y 90 50 50 0 or 1 Discard bit

  Y 0  90 X 0 50 50 0 or 1 Discard bit

  Y 1 270 X 0 50 50 0 or 1 Discard bit

  Y 0  90 Y 90 100 0 0 Keep bit

  Y 1 270 Y 90 0 100 1 Keep bit

Figure 6. Mach-Zehnder Interferometer and Fiber-Based QKD Concept



Each interferometer is modified 
to have a long arm and a short arm, and
the path length differences between the
two arms are greater than the coherence
length of the photon. There is no inter-
ference as the photon leaves Alice’s
instrument. But of the four possible
paths through the entire system (refer to
the figure), the two designated as S1L2
and L1S2 are of equal length (to within
the phase coherence length of the pho-
ton). A photon that travels down those
two paths interferes with itself at Bob’s
exit beam splitter. The system therefore
behaves as if it were a single instru-
ment. Alice and Bob are still free to
vary the phase on one arm of their
interferometers, as needed, to carry out
the protocol.

Our system transmits bits through
48 kilometers of fiber. As in the 
free-space experiments, Alice first
sends a bright pulse to trigger the
detectors and to limit background inter-
ference. Single photons are sent at
1310 nanometers, and the bright timing
pulse is at 1550 nanometers. The
secret-bit yield is lower than that
obtained in the free-space experiment. 

Summary

Quantum cryptography can enable
secure transmission of sensitive, pro-

prietary, or national security informa-
tion across a metropolitan area or cor-
porate campus and provide the
long-term security guarantees such
data require. It is the only technology
that will be secure no matter what
technology an adversary develops in
the future. Furthermore, it raises the
stakes for eavesdroppers because they
must perform risky, active attacks
against a system. Currently, a public-
key encrypted system can be attacked
through passive, standoff monitoring. 

Because of the inherent advantages
of quantum cryptography, we can
envision a future in which a QKD
system provides secure communica-
tions in metropolitan areas between
banks, between off-site stock-trading
centers and central stock exchanges,
between corporate offices, and
between offices and broadband data
networks. Money transfers between
banks now amount to over $2 trillion
per day worldwide and well justify
the expense of implementing QKD
systems. Optical wireless “last-mile”
communications systems could even
provide broadband access to most
homes. 

By combining theoretical analyses
with innovative experimental
advances, the Los Alamos quantum
cryptography team has already
demonstrated the practicality of free-

space quantum cryptography in a
series of record-setting experiments.
In 1996, the team demonstrated
atmospheric quantum-key transmis-
sion at night, quickly followed by a
record-setting 0.5-kilometer point-to-
point transmission in full daylight,
then a 1.6-, and finally a 10-kilometer
transmission. The world record for the
longest QKD distribution in fiber—
48 kilometers—was also held by the
Los Alamos team for many years.
Several of the first demonstrations of
entanglement-based QKD have also
been performed at the Laboratory. 

In the near future, the free-space
quantum cryptography system could
provide secure satellite communica-
tions—using a low-orbit satellite—
between cities anywhere in the world.
When deployed on a spacecraft, our
system can be used to generate crypto-
graphic keys between any two users
who are anywhere on the planet and
can view that spacecraft. Each user
would individually generate a key
with the spacecraft. The second user
would then be instructed to change
specific bits so that the two users’ keys
would match. Because the spacecraft
only needs to instruct the user which
bits to change, and can do so without
revealing any bit values, this is a
secure key-generation methodology. 

On a more philosophical note, the
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Figure 7. Implementation of Fiber-Based QKD 
Our fiber-based QKD system uses two modified interferometers connected by a single, long optical fiber. Each interferometer
has a long (L) arm and a short (S) arm. In going from Alice’s entrance beam splitter to Bob’s exit beam splitter, the photon can
take paths S1S2, L1L2, S1L2, and L1S2. The latter two paths have the same length, and the photon traveling them can maintain
phase coherence and interfere with itself. The protocol then works as described in Figure 6.
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challenging demands of cryptography
have already produced a huge growth
in research into the foundations of
quantum mechanics. Fundamental
concepts that were previously thought
to be testable only in thought experi-
ments have been subjected to 
experimental verification. Many con-
cepts, such as entanglement, that have
been almost completely neglected
since the early days of quantum
physics have been explored and 
realized. This trend will continue, and
we will find out to what extent the
creation and control of “mesoscopic”
quantum systems, that is, the nether-
world between single-particle behav-
ior and collective-particle behavior,
can be performed. This research may
help elucidate the puzzling transition
between the quantum and classical
regime. The development of quantum
technology will open up other 
applications of quantum physics, such
as quantum-enhanced sensors and
improvements to atomic clocks and
satellite navigation systems. Whether
or not quantum cryptography becomes
a widely adopted technology, we are
in for an interesting next decade. �
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Wojciech H. Zurek

This paper has a somewhat unusual origin and, as a consequence, an unusual
structure. It is built on the principle embraced by families who outgrow their
dwellings and decide to add a few rooms to their existing structures instead of start-
ing from scratch. These additions usually “show,” but the whole can still be quite
pleasing to the eye, combining the old and the new in a functional way. 

What follows is such a “remodeling” of the paper I wrote a dozen years ago for
Physics Today (1991). The old text (with some modifications) is interwoven with the
new text, but the additions are set off in boxes throughout this article and serve as a
commentary on new developments as they relate to the original. The references
appear together at the end. 

In 1991, the study of decoherence was still a rather new subject, but already at
that time, I had developed a feeling that most implications about the system’s
“immersion” in the environment had been discovered in the preceding 10 years, so a
review was in order. While writing it, I had, however, come to suspect that the small
gaps in the landscape of the border territory between the quantum and the classical
were actually not that small after all and that they presented excellent opportunities
for further advances. 

Indeed, I am surprised and gratified by how much the field has evolved over the
last decade. The role of decoherence was recognized by a wide spectrum of practic-

Decoherence and the Transition
from Quantum 
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ing physicists as well as, beyond physics proper, by material scientists and
philosophers. The study of the predictability sieve, investigations of the interface
between chaotic dynamics and decoherence, and most recently, the tantalizing
glimpses of the information-theoretic nature of the quantum have elucidated our
understanding of the Universe. During this period, Los Alamos has grown into a
leading center for the study of decoherence and related issues through the enthusi-
astic participation of a superb group of staff members, postdoctoral fellows, long-
term visitors, and students, many of whom have become long-term collaborators.
This group includes, in chronological order, Andy Albrecht, Juan Pablo Paz,
Bill Wootters, Raymond Laflamme, Salman Habib, Jim Anglin, Chris Jarzynski,
Kosuke Shizume, Ben Schumacher, Manny Knill, Jacek Dziarmaga, Diego Dalvit,
Zbig Karkuszewski, Harold Ollivier, Roberto Onofrio, Robin
Blume-Kohut, David Poulin, Lorenza Viola, and David Wallace.

Finally, I have some advice for the reader. I believe this paper
should be read twice: first, just the old text alone; then—and
only then—on the second reading, the whole thing. I would also
recommend to the curious reader two other overviews: the draft
of my Reviews of Modern Physics paper (Zurek 2001a) and Les
Houches Lectures coauthored with Paz (Paz and Zurek 2001).



Introduction

Quantum mechanics works exceedingly well in all practical applications. No example
of conflict between its predictions and experiment is known. Without quantum physics,
we could not explain the behavior of the solids, the structure and function of DNA,
the color of the stars, the action of lasers, or the properties of superfluids. Yet nearly 
a century after its inception, the debate about the relation of quantum physics to the
familiar physical world continues. Why is a theory that seems to account with precision
for everything we can measure still deemed lacking? 

The only “failure” of quantum theory is its inability to provide a natural framework
for our prejudices about the workings of the Universe. States of quantum systems evolve
according to the deterministic, linear Schrödinger equation

(1)

That is, just as in classical mechanics, given the initial state of the system and its
Hamiltonian H, one can, at least in principle, compute the state at an arbitrary time. 
This deterministic evolution of |ψ〉 has been verified in carefully controlled experiments.
Moreover, there is no indication of a border between quantum and classical at which
Equation (1) would fail (see cartoon on the opener to this article). 

There is, however, a very poorly controlled experiment with results so tangible and
immediate that it has enormous power to convince: Our perceptions are often difficult to
reconcile with the predictions of Equation (1). Why? Given almost any initial condition,
the Universe described by |ψ〉 evolves into a state containing many alternatives that are
never seen to coexist in our world. Moreover, while the ultimate evidence for the choice
of one alternative resides in our elusive “consciousness,” there is every indication that 
the choice occurs much before consciousness ever gets involved and that, once made, the
choice is irrevocable. Thus, at the root of our unease with quantum theory is the clash
between the principle of superposition—the basic tenet of the theory reflected in the 
linearity of Equation (1)—and everyday classical reality in which this principle appears
to be violated. 

The problem of measurement has a long and fascinating history. The first widely
accepted explanation of how a single outcome emerges from the multitude of potentiali-
ties was the Copenhagen Interpretation proposed by Niels Bohr (1928), who insisted
that a classical apparatus is necessary to carry out measurements. Thus, quantum theory
was not to be universal. The key feature of the Copenhagen Interpretation is the dividing
line between quantum and classical. Bohr emphasized that the border must be mobile so
that even the “ultimate apparatus”—the human nervous system—could in principle be
measured and analyzed as a quantum object, provided that a suitable classical device
could be found to carry out the task. 

In the absence of a crisp criterion to distinguish between quantum and classical,
an identification of the classical with the macroscopic has often been tentatively accepted.
The inadequacy of this approach has become apparent as a result of relatively recent
developments: A cryogenic version of the Weber bar—a gravity-wave detector— must 
be treated as a quantum harmonic oscillator even though it may weigh a ton (Braginsky
et al. 1980, Caves et al. 1980). Nonclassical squeezed states can describe oscillations of
suitably prepared electromagnetic fields with macroscopic numbers of photons (Teich
and Saleh 1990). Finally, quantum states associated with the currents of superconducting
Josephson junctions involve macroscopic numbers of electrons, but still they can tunnel
between the minima of the effective potential corresponding to the opposite sense of 
rotation (Leggett et al. 1987, Caldeira and Leggett 1983a, Tesche 1986).
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If macroscopic systems cannot be always safely placed on the classical side of the
boundary, then might there be no boundary at all? The Many Worlds Interpretation (or
more accurately, the Many Universes Interpretation), developed by Hugh Everett III with
encouragement from John Archibald Wheeler in the 1950s, claims to do away with the
boundary (Everett 1957, Wheeler 1957). In this interpretation, the entire universe is
described by quantum theory. Superpositions evolve forever according to the Schrödinger
equation. Each time a suitable interaction takes place between any two quantum systems,
the wave function of the universe splits, developing ever more “branches.”

Initially, Everett’s work went almost unnoticed. It was taken out of mothballs over a
decade later by Bryce DeWitt (1970) and DeWitt and Neill Graham (1973), who man-
aged to upgrade its status from “virtually unknown” to “very controversial.” The Many
Worlds Interpretation is a natural choice for quantum cosmology, which describes the
whole Universe by means of a state vector. There is nothing more macroscopic than the
Universe. It can have no a priori classical subsystems. There can be no observer “on the
outside.” In this universal setting, classicality must be an emergent property of the
selected observables or systems. 

At first glance, the Many Worlds and Copenhagen Interpretations have little in 
common. The Copenhagen Interpretation demands an a priori “classical domain” with a
border that enforces a classical “embargo” by letting through just one potential outcome.
The Many Worlds Interpretation aims to abolish the need for the border altogether.
Every potential outcome is accommodated by the ever-proliferating branches of the
wave function of the Universe. The similarity between the difficulties faced by these two
viewpoints becomes apparent, nevertheless, when we ask the obvious question, “Why do
I, the observer, perceive only one of the outcomes?” Quantum theory, with its freedom
to rotate bases in Hilbert space, does not even clearly define which states of the
Universe correspond to the “branches.” Yet, our perception of a reality with alterna-
tives—not a coherent superposition of alternatives—demands an explanation of when,
where, and how it is decided what the observer actually records. Considered in this 
context, the Many Worlds Interpretation in its original version does not really abolish
the border but pushes it all the way to the boundary between the physical Universe and 
consciousness. Needless to say, this is a very uncomfortable place to do physics. 

In spite of the profound nature of the difficulties, recent years have seen a growing con-
sensus that progress is being made in dealing with the measurement problem, which is the
usual euphemism for the collection of interpretational conundrums described above. The
key (and uncontroversial) fact has been known almost since the inception of quantum the-
ory, but its significance for the transition from quantum to classical is being recognized only
now: Macroscopic systems are never isolated from their environments. Therefore—as H.
Dieter Zeh emphasized (1970)—they should not be expected to follow Schrödinger’s equa-
tion, which is applicable only to a closed system. As a result, systems usually regarded as
classical suffer (or benefit) from the natural loss of quantum coherence, which “leaks out”
into the environment (Zurek 1981, 1982). The resulting “decoherence” cannot be ignored
when one addresses the problem of the reduction of the quantum mechanical wave packet:
Decoherence imposes, in effect, the required “embargo” on the potential outcomes by
allowing the observer to maintain only the records of alternatives sanctioned by decoher-
ence and to be aware of only one of the branches—one of the “decoherent histories” in the
nomenclature of Murray Gell-Mann and James Hartle (1990) and Hartle (1991). 

The aim of this paper is to explain the physics and thinking behind this approach.
The reader should be warned that this writer is not a disinterested witness to this 
development (Wigner 1983, Joos and Zeh 1985, Haake and Walls 1986, Milburn and
Holmes 1986, Albrecht 1991, Hu et al. 1992), but rather, one of the proponents. I shall,
nevertheless, attempt to paint a fairly honest picture and point out the difficulties 
as well as the accomplishments.
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Correlations and Measurements

A convenient starting point for the discussion of the measurement problem and, more
generally, of the emergence of classical behavior from quantum dynamics is the analysis
of quantum measurements due to John von Neumann (1932). In contrast to Bohr, who
assumed at the outset that the apparatus must be classical (thereby forfeiting the claim
of quantum theory to universal validity), von Neumann analyzed the case of a quantum
apparatus. I shall reproduce his analysis for the simplest case: a measurement on a two-
state system S (which can be thought of as an atom with spin 1/2) in which a quantum
two-state (one bit) detector records the result.

The Hilbert space H
S

of the system is spanned by the orthonormal states |↑〉 and |↓〉,
while the states |d↑〉 and |d↓〉 span the H

D
of the detector. A two-dimensional H

D
is the

absolute minimum needed to record the possible outcomes. One can devise a quantum
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Much of what was written in the introduction
remains valid today. One important development is
the increase in experimental evidence for the validity
of the quantum principle of superposition in various
contexts including spectacular double-slit experi-
ments that demonstrate interference of fullerenes
(Arndt et al. 1999), the study of superpositions in
Josephson junctions (Mooij et al.1999, Friedman et
al. 2000), and the implementation of Schrödinger
“kittens” in atom interferometry (Chapman et al.
1995, Pfau et al. 1994), ion traps (Monroe et al.
1996) and microwave cavities (Brune et al. 1996).
In addition to confirming the superposition principle

and other exotic aspects of quantum theory (such as
entanglement) in novel settings, these experiments
allow—as we shall see later—for a controlled 
investigation of decoherence. 

The other important change that influenced the per-
ception of the quantum-to-classical “border territory”
is the explosion of interest in quantum information
and computation. Although quantum computers were
already being discussed in the 1980s, the nature of the
interest has changed since Peter Shor invented his 
factoring algorithm. Impressive theoretical advances,
including the discovery of quantum error correction
and resilient quantum computation, quickly followed,
accompanied by increasingly bold experimental for-
ays. The superposition principle, once the cause of
trouble for the interpretation of quantum theory, has
become the central article of faith in the emerging 

science of quantum information processing. This last
development is discussed elsewhere in this issue, so 
I shall not dwell on it here. 

The application of quantum physics to information
processing has also transformed the nature of interest
in the process of decoherence: At the time of my orig-
inal review (1991), decoherence was a solution to the
interpretation problem—a mechanism to impose an
effective classicality on de facto quantum systems. In
quantum information processing, decoherence plays
two roles. Above all, it is a threat to the quantumness
of quantum information. It invalidates the quantum
superposition principle and thus turns quantum com-
puters into (at best) classical computers, negating the
potential power offered by the quantumness of the
algorithms. But decoherence is also a necessary
(although often taken for granted) ingredient in quan-
tum information processing, which must, after all, end
in a “measurement.”

The role of a measurement is to convert quantum
states and quantum correlations (with their 
characteristic indefiniteness and malleability) into
classical, definite outcomes. Decoherence leads to 
the environment-induced superselection (einselection)
that justifies the existence of the preferred pointer
states. It enables one to draw an effective border
between the quantum and the classical in straightfor-
ward terms, which do not appeal to the “collapse of
the wave packet” or any other such deus ex machina.

Decoherence in Quantum Information Processing



detector (see Figure 1) that “clicks” only when the spin is in the state |↑〉, that is,

|↑〉 |d↓〉 → |↑〉 |d↑〉 , (2)

and remains unperturbed otherwise.
I shall assume that, before the interaction, the system was in a pure state |ψ

S
〉 given by

|ψ
S

〉 = α|↑〉 + β|↓〉  , (3)

with the complex coefficients satisfying |α|2 + |β|2 = 1. The composite system starts as

|Φi〉 = |ψ
S

〉|d↓〉  . (4)

Interaction results in the evolution of |Φi〉 into a correlated state |Φc〉:

|Φi〉 = (α|↑〉 + β|↓〉)|d↓〉 ⇒ α|↑〉|d↑〉 + β|↓〉|d↓〉 = |Φc〉  . (5)

This essential and uncontroversial first stage of the measurement process can be accom-
plished by means of a Schrödinger equation with an appropriate interaction. It might be
tempting to halt the discussion of measurements with Equation (5). After all, the corre-
lated state vector |Φc〉 implies that, if the detector is seen in the state |d↑〉, the system is
guaranteed to be found in the state |↑〉. Why ask for anything more? 

The reason for dissatisfaction with |Φc〉 as a description of a completed measurement
is simple and fundamental: In the real world, even when we do not know the outcome of
a measurement, we do know the possible alternatives, and we can safely act as if only
one of those alternatives has occurred. As we shall see in the next section, such an
assumption is not only unsafe but also simply wrong for a system described by |Φc〉. 

How then can an observer (who has not yet consulted the detector) express his 
ignorance about the outcome without giving up his certainty about the “menu” of the
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Figure 1. A Reversible
Stern-Gerlach Apparatus
The “gedanken” reversible
Stern-Gerlach apparatus in (a)
splits a beam of atoms into two
branches that are correlated
with the component of the spin
of the atoms (b) and then
recombines the branches
before the atoms leave the
device. Eugene Wigner (1963)
used this gedanken experiment
to show that a correlation
between the spin and the loca-
tion of an atom can be
reversibly undone. The intro-
duction of a one-bit (two-state)
quantum detector that changes
its state when the atom passes
nearby prevents the reversal:
The detector inherits the corre-
lation between the spin and the
trajectory, so the Stern-Gerlach
apparatus can no longer undo
the correlation. (This illustration 

was adapted with permission from 

Zurek 1981.)



possibilities? Quantum theory provides the right formal tool for the occasion: A density
matrix can be used to describe the probability distribution over the alternative outcomes. 

Von Neumann was well aware of these difficulties. Indeed, he postulated (1932) that,
in addition to the unitary evolution given by Equation (1), there should be an ad hoc
“process 1”—a nonunitary reduction of the state vector—that would take the pure, cor-
related state |Φc〉 into an appropriate mixture: This process makes the outcomes inde-
pendent of one another by taking the pure-state density matrix:

ρc = |Φc〉〈Φc| = |α|2|↑〉〈↑||d↑〉〈d↑| + αβ*|↑〉〈↓||d↑〉〈d↓|

+ α∗β|↓〉〈↑|d↓〉〈d↑| + |β|2|↓〉〈↓||d↓〉〈d↓| , (6)

and canceling the off-diagonal terms that express purely quantum correlations (entangle-
ment) so that the reduced density matrix with only classical correlations emerges:

ρr = |α|2|↑〉〈↑||d↑〉〈d↑| + |β|2|↓〉〈↓||d↓〉〈d↓|  . (7)

Why is the reduced ρr easier to interpret as a description of a completed measurement
than ρc? After all, both ρr and ρc contain identical diagonal elements. Therefore, both
outcomes are still potentially present. So what—if anything—was gained at the substan-
tial price of introducing a nonunitary process 1?

The Question of Preferred Basis: What Was Measured?

The key advantage of ρr over ρc is that its coefficients may be interpreted as classical
probabilities. The density matrix ρr can be used to describe the alternative states of a
composite spin-detector system that has classical correlations. Von Neumann’s 
process 1 serves a similar purpose to Bohr’s “border” even though process 1 leaves all
the alternatives in place. When the off-diagonal terms are absent, one can nevertheless
safely maintain that the apparatus, as well as the system, is each separately in a definite
but unknown state, and that the correlation between them still exists in the preferred
basis defined by the states appearing on the diagonal. By the same token, the identities
of two halves of a split coin placed in two sealed envelopes may be unknown but are
classically correlated. Holding one unopened envelope, we can be sure that the half it
contains is either “heads” or “tails” (and not some superposition of the two) and that the
second envelope contains the matching alternative. 

By contrast, it is impossible to interpret ρc as representing such “classical ignorance.”
In particular, even the set of the alternative outcomes is not decided by ρc! This circum-
stance can be illustrated in a dramatic fashion by choosing α = –β = 1/√2 so that the
density matrix ρc is a projection operator constructed from the correlated state

|Φc〉 = (|↑〉|d↑〉 – |↓〉|d↓〉)/√2  . (8)

This state is invariant under the rotations of the basis. For instance, instead of the eigen-
states of |↑〉 and |↓〉 of σ̂z one can rewrite |Φc〉 in terms of the eigenstates of σ̂x:

|�〉 = (|↑〉 + |↓〉)/√2  , (9a)

|⊗〉 = (|↑〉 – |↓〉)/√2  . (9b)
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This representation immediately yields

|Φc〉 = – (|�〉|d�〉 – |⊗〉|d⊗〉)/√2  ,                (10)

where

|d�〉 = (|d↓〉 – |d↑〉)/√2  and |d⊗〉 = (|d↑〉 + |d↓〉)/√2 (11)

are, as a consequence of the superposition principle, perfectly “legal” states in the
Hilbert space of the quantum detector. Therefore, the density matrix

ρc = |Φc〉〈Φc|

could have many (in fact, infinitely many) different states of the subsystems on the
diagonal. 

This freedom to choose a basis  should not come as a surprise. Except for the
notation, the state vector |Φc〉 is the same as the wave function of a pair of maxi-
mally correlated (or entangled) spin-1/2 systems in David Bohm’s version (1951)
of the Einstein-Podolsky-Rosen (EPR) paradox (Einstein et al. 1935). And the
experiments that show that such nonseparable quantum correlations violate Bell’s
inequalities (Bell 1964) are demonstrating the following key point: The states of
the two spins in a system described by |Φc〉 are not just unknown, but rather they
cannot exist before the “real” measurement (Aspect et al. 1981, 1982). We con-
clude that when a detector is quantum, a superposition of records exists and is a
record of a superposition of outcomes—a very nonclassical state of affairs.

Missing Information and Decoherence

Unitary evolution condemns every closed quantum system to “purity.” Yet, if the
outcomes of a measurement are to become independent events, with consequences
that can be explored separately, a way must be found to dispose of the excess infor-
mation. In the previous sections, quantum correlation was analyzed from the point
of view of its role in acquiring information. Here, I shall discuss the flip side of the
story: Quantum correlations can also disperse information throughout the degrees
of freedom that are, in effect, inaccessible to the observer. Interaction with the
degrees of freedom external to the system—which we shall summarily refer to as
the environment—offers such a possibility. 

Reduction of the state vector, ρc ⇒ ρr, decreases the information available to
the observer about the composite system SD. The information loss is needed if
the outcomes are to become classical and thereby available as initial conditions to
predict the future. The effect of this loss is to increase the entropy H = –Trρ lnρ
by an amount

∆H = H(ρr) – H(ρc) = – (|α|2 ln|α|2 + |β|2 ln|β|2)  . (12)

Entropy must increase because the initial state described by ρc was pure,
H(ρc) = 0, and the reduced state is mixed. Information gain—the objective of the
measurement—is accomplished only when the observer interacts and becomes
correlated with the detector in the already precollapsed state ρr. 

Number 27  2002  Los Alamos Science  93

Decoherence and the Transition from Quantum to Classical—Revisited



To illustrate the process of the environment-induced decoherence, consider a 
system S, a detector D, and an environment E. The environment is also a quantum 
system. Following the first step of the measurement process—establishment of a 
correlation as shown in Equation (5)—the environment similarly interacts and 
becomes correlated with the apparatus:

|Φc〉| E0〉 = (α|↑〉|d↑〉 + β|↓〉|d↓〉)| E 0〉 ⇒ α|↑〉|d↑〉| E ↑〉 + β|↓〉|d↓〉| E ↓〉 = |Ψ〉 .        (13)

The final state of the combined SDE “von Neumann chain” of correlated systems
extends the correlation beyond the SD pair. When the states of the environment |Ei〉
corresponding to the states |d↑〉 and |d↓〉 of the detector are orthogonal, 〈Ei|Ei′〉 = δii′,
the density matrix for the detector-system combination is obtained by ignoring (tracing
over) the information in the uncontrolled (and unknown) degrees of freedom

ρ
DS

= Tr
E

|Ψ〉〈Ψ| = Σ i〈Ei|Ψ〉〈Ψ|Ei′〉 = |α|2|↑〉〈↑||d↑〉〈d↑| + |β|2|↓〉〈↓||d↓〉〈d↓| = ρr .      (14)

The resulting ρr is precisely the reduced density matrix that von Neumann called for.
Now, in contrast to the situation described by Equations (9)–(11), a superposition of the
records of the detector states is no longer a record of a superposition of the state of the
system. A preferred basis of the detector, sometimes called the “pointer basis” for obvi-
ous reasons, has emerged. Moreover, we have obtained it—or so it appears—without
having to appeal to von Neumann’s nonunitary process 1 or anything else beyond the
ordinary, unitary Schrödinger evolution. The preferred basis of the detector—or for that
matter, of any open quantum system—is selected by the dynamics.

Not all aspects of this process are completely clear. It is, however, certain that the
detector–environment interaction Hamiltonian plays a decisive role. In particular, when
the interaction with the environment dominates, eigenspaces of any observable Λ that
commutes with the interaction Hamiltonian,

[Λ, Hint] = 0  , (15)

invariably end up on the diagonal of the reduced density matrix (Zurek 1981, 1982).
This commutation relation has a simple physical implication: It guarantees that the
pointer observable Λ will be a constant of motion, a conserved quantity under the evolu-
tion generated by the interaction Hamiltonian. Thus, when a system is in an eigenstate
of Λ, interaction with the environment will leave it unperturbed. 

In the real world, the spreading of quantum correlations is practically inevitable. For
example, when in the course of measuring the state of a spin-1/2 atom (see Figure 1b), a
photon had scattered from the atom while it was traveling along one of its two alterna-
tive routes, this interaction would have resulted in a correlation with the environment
and would have necessarily led to a loss of quantum coherence. The density matrix of
the SD pair would have lost its off-diagonal terms. Moreover, given that it is impossible
to catch up with the photon, such loss of coherence would have been irreversible. As we
shall see later, irreversibility could also arise from more familiar, statistical causes:
Environments are notorious for having large numbers of interacting degrees of freedom,
making extraction of lost information as difficult as reversing trajectories in the
Boltzmann gas. 
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The contrast between the density matrices in
Equations (6) and (7) is stark and obvious. In particu-
lar, the entanglement between the system and the
detector in ρc is obviously quantum—classical sys-
tems cannot be entangled. The argument against the
“ignorance” interpretation of ρc still stands. Yet we
would like to have a quantitative measure of how
much is classical (or how much is quantum) about the
correlations of a state represented by a general density
matrix. Such a measure of the quantumness of corre-
lation was devised recently (Ollivier and Zurek 2002).
It is known as quantum discord. Of the several closely
related definitions of discord, we shall select one that
is easiest to explain. It is based on mutual informa-
tion—an information-theoretic measure of how much
easier it is to describe the state of a pair of objects 
(S, D) jointly rather than separately. One formula for
mutual information I(S:D) is simply 

I(S:D) = H(S) + H(D) – H(S, D),

where H(S) and H(D) are the entropies of S and D,
respectively, and H(S, D) is the joint entropy of the
two. When S and D are not correlated (statistically
independent),

H(S, D) = H(S) + H(D),

and I(S:D) = 0. By contrast, when there is a perfect
classical correlation between them (for example, two
copies of the same book), H(S, D) = H(S) = H(D)
= I(S:D). Perfect classical correlation implies that,
when we find out all about one of them, we also know
everything about the other, and the conditional
entropy H(S|D) (a measure of the uncertainty about
S after the state of D is found out) disappears.
Indeed, classically, the joint entropy H(S, D) can
always be decomposed into, say, H(D), which meas-
ures the information missing about D, and the condi-
tional entropy H(S|D). Information is still missing
about S even after the state of D has been deter-
mined: H(S, D) = H(D) + H(S|D). This expression
for the joint entropy suggests an obvious rewrite of
the preceding definition of mutual information into a
classically identical form, namely,

J(S:D) = H(S) + H(D) – (H(D) + H(S|D)). 

Here, we have abstained from the obvious (and per-
fectly justified from a classical viewpoint) cancella-
tion in order to emphasize the central feature of quan-

tumness: In quantum physics, the state collapses into
one of the eigenstates of the measured observable.
Hence, a state of the object is redefined by a measure-
ment. Thus, the joint entropy can be defined in terms
of the conditional entropy only after the measurement
used to access, say, D, has been specified. In that
case,

H |dk〉(S, D) = (H(D) + H(S|D))|dk〉 . 

This type of joint entropy expresses the ignorance
about the pair (S, D) after the observable with the
eigenstates {|dk〉} has been measured on D. Of course,
H |dk〉(S, D) is not the only way to define the entropy
of the pair. One can also compute a basis-independent
joint entropy H(S, D), the von Neumann entropy of
the pair. Since these two definitions of joint entropy
do not coincide in the quantum case, we can define a
basis-dependent quantum discord 

δ |dk〉(S|D) = I – J = (H(D) + H(S|D))|dk〉 – H(S,D)

as the measure of the extent by which the underlying
density matrix describing S and D is perturbed by a
measurement of the observable with the eigenstates
{|dk〉}. States of classical objects—or classical corre-
lations—are “objective:” They exist independent of
measurements. Hence, when there is a basis {|d̂k〉}
such that the minimum discord evaluated for this basis
disappears,

δ̂ (S|D) = min{|dk〉}(H(S,D) – (H(D) +H(S|D))|dk〉) = 0,

the correlation can be regarded as effectively classical
(or more precisely, as “classically accessible through
D”). One can then show that there is a set of probabil-
ities associated with the basis {|dk〉} that can be treat-
ed as classical. It is straightforward to see that, when
S and D are entangled (for example, ρc = |φc 〉〈φc|),
then δ̂ > 0 in all bases. By contrast, if we consider ρr,
discord disappears in the basis {|d↑〉, |d↓〉} so that the
underlying correlation is effectively classical. 

It is important to emphasize that quantum discord is
not just another measure of entanglement but a gen-
uine measure of the quantumness of correlations. In
situations involving measurements and decoherence,
quantumness disappears for the preferred set of states
that are effectively classical and thus serves as an
indicator of the pointer basis, which as we shall see,
emerges as a result of decoherence and einselection. 

Quantum Discord—A Measure of Quantumness



Decoherence: How Long Does It Take?

A tractable model of the environment is afforded by a collection of harmonic oscilla-
tors (Feynman and Vernon 1963, Dekker 1981, Caldeira and Leggett 1983a, 1983b,
1985, Joos and Zeh 1985, Hu et al. 1992) or, equivalently, by a quantum field (Unruh
and Zurek 1989). If a particle is present, excitations of the field will scatter off the parti-
cle. The resulting “ripples” will constitute a record of its position, shape, orientation,
and so on, and most important, its instantaneous location and hence its trajectory. 

A boat traveling on a quiet lake or a stone that fell into water will leave such an
imprint on the water surface. Our eyesight relies on the perturbation left by the objects
on the preexisting state of the electromagnetic field. Hence, it is hardly surprising that
an imprint is left whenever two quantum systems interact, even when “nobody is 
looking,” and even when the lake is stormy and full of preexisting waves, and the field
is full of excitations—that is, when the environment starts in equilibrium at some finite
temperature. “Messy” initial states of the environment make it difficult to decipher the
record, but do not preclude its existence.

A specific example of decoherence—a particle at position x interacting with a scalar
field φ (which can be regarded as a collection of harmonic oscillators) through the
Hamiltonian

Hint = � x dφ/dt  , (16)

where � is the strength of the coupling, has been extensively studied by many, including
the investigators just referenced. The conclusion is easily formulated in the so-called
“high-temperature limit,” in which only thermal-excitation effects of the field φ are
taken into account and the effect of zero-point vacuum fluctuations is neglected. 

In this case, the density matrix ρ(x, x′) of the particle in the position representation
evolves according to the master equation

(17)

where H is the particle’s Hamiltonian (although with the potential V(x) adjusted because
of Hint), γ is the relaxation rate, kB is the Boltzmann constant, and T is the temperature
of the field. Equation (17) is obtained by first solving exactly the Schrödinger equation
for a particle plus the field and then tracing over the degrees of freedom of the field.

I will not analyze Equation (17) in detail but just point out that it naturally separates
into three distinct terms, each of them responsible for a different aspect of the effectively
classical behavior. The first term—the von Neumann equation (which can be derived
from the Schrödinger equation)—generates reversible classical evolution of the expecta-
tion value of any observable that has a classical counterpart regardless of the form of ρ
(Ehrenfest’s theorem). The second term causes dissipation. The relaxation rate γ = η/2m
is proportional to the viscosity η = �2/2 because of the interaction with the scalar field.
That interaction causes a decrease in the average momentum and loss of energy. The last
term also has a classical counterpart: It is responsible for fluctuations or random “kicks”
that lead to Brownian motion. We shall see this in more detail in the next section. 
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Figure 2. A “Schrödinger
Cat” State or a Coherent
Superposition
This cat state ϕ (x), the coher-
ent superposition of two
Gaussian wave packets of
Equation (18), could describe 
a particle in a superposition 
of locations inside a Stern-
Gerlach apparatus (see 
Figure 1) or the state that 
develops in the course of 
a double-slit experiment.
The phase between the two 
components has been chosen
to be zero.
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For our purposes, the effect of the last term on quantum superpositions is of great-
est interest. I shall show that it destroys quantum coherence, eliminating off-diagonal
terms responsible for quantum correlations between spatially separated pieces of the
wave packet. It is therefore responsible for the classical structure of the phase space,
as it converts superpositions into mixtures of localized wave packets which, in the
classical limit, turn into the familiar points in phase space. This effect is best illus-
trated by an example. Consider the “cat” state shown in Figure 2, where the wave
function of a particle is given by a coherent superposition of two Gaussians:
ϕ (x) = (χ+(x) + χ– (x))/21/2 and the Gaussians are

(18)

For the case of wide separation (∆x > > δ), the corresponding density matrix 
ρ(x, x′) = ϕ (x) ϕ*(x′) has four peaks: Two on the diagonal defined by x = x′, and two 
off the diagonal for which x and x′ are very different (see Figure 3). Quantum coherence
is due to the off-diagonal peaks. As those peaks disappear, position emerges as an
approximate preferred basis.

The last term of Equation (17), which is proportional to (x – x′)2, has little effect on
the diagonal peaks. By contrast, it has a large effect on the off-diagonal peaks for which
(x – x′)2 is approximately the square of the separation (∆x)2. In particular, it causes the 

off-diagonal peaks to decay at the rate 

It follows that quantum coherence will disappear on a decoherence time scale (Zurek 1984):

(19)

where λdB = h/(2mkBT )–1/2 is the thermal de Broglie wavelength. For macroscopic
objects, the decoherence time τD is typically much less than the relaxation time τR = γ –1.
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Figure 3. Evolution of the
Density Matrix for the
Schrödinger Cat State in
Figure 2 
(a)This plot shows the density
matrix for the cat state in
Figure 2 in the position repre-
sentation ρ(x, x′) = ϕ(x)ϕ*(x).
The peaks near the diagonal
(green) correspond to the two
possible locations of the parti-
cle. The peaks away from the
diagonal (red) are due to quan-
tum coherence. Their existence
and size demonstrate that the
particle is not in either of the
two approximate locations but
in a coherent superposition of
them. (b) Environment-induced
decoherence causes decay of
the off-diagonal terms of 
ρ(x, x′). Here, the density matrix
in (a) has partially decohered.
Further decoherence would
result in a density matrix with
diagonal peaks only. It can then
be regarded as a classical
probability distribution with an
equal probability of finding the
particle in either of the loca-
tions corresponding to the
Gaussian wave packets.

(a) (b)

x x
x ′ x ′

d

dt
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For a system at temperature T = 300 kelvins with mass m = 1 gram and separation 
∆x = 1 centimeter, the ratio of the two time scales is τD/τR ~ 10–40! Thus, even if the
relaxation rate were of the order of the age of the Universe, ~1017 seconds, quantum
coherence would be destroyed in τD ~ 10–23 second.

For microscopic systems and, occasionally, even for very macroscopic ones, the deco-
herence times are relatively long. For an electron (me = 10–27 grams), τD can be much
larger than the other relevant time scales on atomic and larger energy and distance scales.
For a massive Weber bar, tiny ∆x (~10–17 centimeter) and cryogenic temperatures sup-
press decoherence. Nevertheless, the macroscopic nature of the object is certainly crucial
in facilitating the transition from quantum to classical.
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A great deal of work on master equations and their derivations in different 
situations has been conducted since 1991, but in effect, most of the results
described above stand. A summary can be found in Paz and Zurek (2001) and
a discussion of the caveats to the simple conclusions regarding decoherence
rates appears in James Anglin et al. (1997). 

Perhaps the most important development in the study of decoherence is on the
experimental front. In the past decade, several experiments probing decoher-
ence in various systems have been carried out. In particular, Michel Brune,
Serge Haroche, Jean-Michel Raimond, and their colleagues at École Normale
Supérieure in Paris (Brune et al. 1996, Haroche 1998) have performed a series
of microwave cavity experiments in which they manipulate electromagnetic
fields into a Schrödinger-cat-like superposition using rubidium atoms. They
probe the ensuing loss of quantum coherence. These experiments have con-
firmed the basic tenets of decoherence theory. Since then, the French scientists
have applied the same techniques to implement various quantum information-
processing ventures. They are in the process of upgrading their equipment 
in order to produce “bigger and better” Schrödinger cats and to study their
decoherence.

A little later, Wineland, Monroe, and coworkers (Turchette et al. 2000) used
ion traps (set up to implement a fragment of one of the quantum computer
designs) to study the decoherence of ions due to radiation. Again, theory was
confirmed, further advancing the status of decoherence as both a key ingredi-
ent of the explanation of the emergent classicality and a threat to quantum
computation. In addition to these developments, which test various aspects of
decoherence induced by a real or simulated “large environment,” Pritchard 
and his coworkers at the Massachusetts Institute of Technology have carried
out a beautiful sequence of experiments by using atomic interferometry in
order to investigate the role of information transfer between atoms and 
photons (see Kokorowski et al. 2001 and other references therein). Finally,
“analogue experiments” simulating the behavior of the Schrödinger equation in
optics (Cheng and Raymer 1999) have explored some of the otherwise diffi-
cult-to-access corners of the parameter space. 

In addition to these essentially mesoscopic Schrödinger-cat decoherence 
experiments, designs of much more substantial “cats” (for example,
mirrors in superpositions of quantum states) are being investigated in 
several laboratories.

Experiments on Decoherence



Classical Limit of Quantum Dynamics

The Schrödinger equation was deduced from classical mechanics in the Hamilton-
Jacobi form. Thus, it is no surprise that it yields classical equations of motion when h
can be regarded as small. This fact, along with Ehrenfest’s theorem, Bohr’s correspon-
dence principle, and the kinship of quantum commutators with the classical Poisson
brackets, is part of the standard lore found in textbooks. However, establishing the quan-
tum–classical correspondence involves the states as well as the equations of motion.
Quantum mechanics is formulated in Hilbert space, which can accommodate localized
wave packets with sensible classical limits as well as the most bizarre superpositions.
By contrast, classical dynamics happens in phase space.

To facilitate the study of the transition from quantum to classical behavior, it is con-
venient to employ the Wigner transform of a wave function ψ(x):

(20)

which expresses quantum states as functions of position and momentum.
The Wigner distribution W(x,p) is real, but it can be negative. Hence, it cannot be 

regarded as a probability distribution. Nevertheless, when integrated over one of the two vari-
ables, it yields the probability distribution for the other (for example, ∫ W(x,p)dp = |ψ(x)|2).
For a minimum uncertainty wave packet, ψ(x) = π–1/4δ–1/2exp{– (x – x0)2/2δ2 + ip0x/h},
the Wigner distribution is a Gaussian in both x and p:

(21)

It describes a system that is localized in both x and p. Nothing else that Hilbert space
has to offer is closer to approximating a point in classical phase space. The Wigner dis-
tribution is easily generalized to the case of a general density matrix ρ(x,x′):

(22)

where ρ(x,x′) is, for example, the reduced density matrix of the particle discussed before.
The phase-space nature of the Wigner transform suggests a strategy for exhibiting

classical behavior: Whenever W (x,p) represents a mixture of localized wave packets—
as in Equation (21)—it can be regarded as a classical probability distribution in the
phase space. However, when the underlying state is truly quantum, as is the superposi-
tion in Figure 2, the corresponding Wigner distribution function will have alternating
sign—see Figure 4(a). This property alone will make it impossible to regard the function
as a probability distribution in phase space. The Wigner function in Figure 4(a) is

(23)

where the Gaussians W+ and W – are Wigner transforms of the Gaussian wave packets
χ+ and χ–. If the underlying state had been a mixture of χ+ and χ– rather than a super-
position, the Wigner function  would have been described by the same two Gaussians
W+ and W –, but the oscillating term would have been absent.
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The equation of motion for W(x, p) of a particle coupled to an environment can be
obtained from Equation (17) for ρ(x, x′):

(24)

where V is the renormalized potential and D = 2mγ kBT = ηkBT. The three terms of this
equation correspond to the three terms of Equation (17).

The first term is easily identified as a classical Poisson bracket {H, W}. That is,
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Figure 4. Wigner
Distributions and Their
Decoherence for Coherent
Superpositions
(a) The Wigner distribution
W (x,p ) is plotted as a function
of x and p for the cat state of
Figure 2. Note the two separate
positive peaks as well as the
oscillating interference term 
in between them. This distribu-
tion cannot be regarded as a
classical probability distribu-
tion in phase space because it
has negative contributions.
(b–e) Decoherence produces
diffusion in the direction of the
momentum. As a result, the
negative and positive ripples
of the interference term in
W (x,p ) diffuse into each other
and cancel out. This process is
almost instantaneous for open
macroscopic systems. In the
appropriate limit, the Wigner
function has a classical 
structure in phase space and
evolves in accord with the
equations of classical dynam-
ics. (a′–e′) The analogous 
initial Wigner distribution and
its evolution for a superposi-
tion of momenta are shown.
The interference terms disap-
pear more slowly on a time
scale dictated by the dynamics
of the system: Decoherence is
caused by the environment
coupling to (that is, monitor-
ing) the position of the 
system—see Equation(16).
So, for a superposition of
momenta, it will start only after
different velocities move 
the two peaks into different
locations.
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if w(x, p) is a familiar classical probability density in phase space, then it evolves
according to:

(25)

where L stands for the Liouville operator. Thus, classical dynamics in its Liouville
form follows from quantum dynamics at least for the harmonic oscillator case,
which is described rigorously by Equations (17) and (24). (For more general V(x),
the Poisson bracket would have to be supplemented by quantum corrections of order
h.) The second term of Equation (24) represents friction. The last term results in the
diffusion of W(x, p) in momentum at the rate given by D. 
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Since 1991, understanding the emergence of preferred
pointer states during the process of decoherence has
advanced a great deal. Perhaps the most important
advance is the predictability sieve (Zurek 1993, Zurek
et al. 1993), a more general definition of pointer states
that applies even when the interaction with the envi-
ronment does not dominate over the self-Hamiltonian
of the system. The predictability sieve sifts through
the Hilbert space of a system interacting with its envi-
ronment and selects states that are most predictable.
Motivation for the predictability sieve comes from the
observation that classical states exist or evolve pre-
dictably. Therefore, selecting quantum states that
retain predictability in spite of the coupling to the
environment is the obvious strategy in search of clas-
sicality. To implement the predictability sieve, we
imagine a (continuously infinite) list of all the pure
states {|ψ〉} in the Hilbert space of the system in
question. Each of them would evolve, after a time t,
into a density matrix ρ|ψ〉(t). If the system were isolat-
ed, all the density matrices would have the form
ρ|ψ〉(t) = |ψ(t)〉〈ψ(t)| of projection operators, where
|ψ(t)〉 is the appropriate solution of the Schrödinger
equation. But when the system is coupled to the 
environment (that is, the system is “open”), ρ|ψ〉(t) 
is truly mixed and has a nonzero von Neumann
entropy. Thus, one can compute 
H(ρ|ψ〉(t)) = –Trρ|ψ〉(t) logρ|ψ〉(t), thereby defining a
functional on the Hilbert space H

S
of the system,

|ψ〉 → H(|ψ〉, t). 

An obvious way to look for predictable, effectively clas-
sical states is to seek a subset of all {|ψ〉} that minimize
H(|ψ〉, t) after a certain, sufficiently long time t. When
such preferred pointer states exist, are well defined (that
is, the minimum of the entropy H(|ψ〉,t) differs signifi-
cantly for pointer states from the average value), and are
reasonably stable (that is, after the initial decoherence

time, the set of preferred states is reasonably insensitive
to the precise value of t), one can consider them as good
candidates for the classical domain. Figure A illustrates
an implementation of the predictability sieve strategy
using a different, simpler measure of predictability—
purity (Trρ2)—rather than the von Neumann entropy,
which is much more difficult to compute. 

Figure A. The Predictability Sieve for the
Underdamped Harmonic Oscillator
One measure of predictability is the so-called purity
Trρ2, which is plotted as a function of time for mixtures
of minimum uncertainty wave packets in an under-
damped harmonic oscillator with γ/ω = 10–4. The wave
packets start with different squeeze parameters s. Trρ2

serves as a measure of the purity of the reduced den-
sity matrix ρ. The predictability sieve favors coherent
states (s = 1), which have the shape of a ground state,
that is, the same spread in position and momentum
when measured in units natural for the harmonic 
oscillator. Because they are the most predictable
(more than the energy eigenstates), they are expected
to play the crucial role of the pointer basis in the 
transition from quantum to classical.
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Classical mechanics “happens” in phase space. It is
therefore critically important to show that quantum 
theory can—in the presence of decoherence—reproduce
the basic structure of classical phase space and that it
can emulate classical dynamics. The argument put 
forward in my original paper (1991) has since been
amply supported by several related developments. 

The crucial idealization that plays a key role in classi-
cal physics is a “point.” Because of Heisenberg’s prin-
ciple, ∆x ∆p ≥ h/2, quantum theory does not admit
states with simultaneously vanishing ∆x and ∆p.
However, as the study of the predictability sieve has
demonstrated, in many situations relevant to the classi-
cal limit of quantum dynamics, one can expect decoher-
ence to select pointer states that are localized in both
∆x and ∆p, that is, approximate minimum uncertainty
wave packets. In effect, these wave packets are a quan-
tum version of points, which appear naturally in the
underdamped harmonic oscillator coupled weakly to the
environment (Zurek et al. 1993, Gallis 1996). These
results are also relevant to the transition from quantum
to classical in the context of field theory with the added
twist that the kinds of states selected will typically dif-
fer for bosonic and fermionic fields (Anglin and Zurek
1996) because bosons and fermions tend to couple dif-
ferently to their environments. Finally, under suitable
circumstances, einselection can even single out energy
eigenstates of the self-Hamiltonian of the system, thus
justifying in part the perception of “quantum jumps”
(Paz and Zurek 1999).

An intriguing arena for the discussion of quantum-clas-
sical correspondence is quantum chaos. To begin with,
classical and quantum evolutions from the same initial
conditions of a system lead to very different phase-
space “portraits.” The quantum phase-space portrait 
will depend on the particular representation used, but
there are good reasons to favor the Wigner distribution.
Studies that use the Wigner distribution indicate that,
at the moment when quantum-classical correspondence
is lost in chaotic dynamics, even the averages computed
using properties of the classical and quantum states
begin to differ (Karkuszewski et al. 2002).

Decoherence appears to be very effective in restoring
correspondence. This point, originally demonstrated
almost a decade ago (Zurek and Paz 1994, 1995) has
since been amply corroborated by numerical evidence
(Habib et al. 1998). Basically, decoherence eradicates
the small-scale interference accompanying the rapid
development of large-scale coherence in quantum ver-

sions of classically chaotic systems (refer to Figure A).
This outcome was expected. In order for the quantum to
classical correspondence to hold, the coherence length
lC of the quantum state must satisfy the following
inequality: lC = h/(2Dλ)1/2 << χ, where λ is the
Lyapunov exponent, D is the usual coefficient describ-
ing the rate of decoherence, and χ is the scale on which
the potential V(x) is significantly nonlinear:

When a quantum state is localized on scales small com-
pared to χ (which is the import of the inequality above),
its phase space evolution is effectively classical, but
because of chaos and decoherence, it becomes irre-
versible and unpredictable. Nevertheless—as argued by
Tanmoy Bhattacharya, Salman Habib, and Kurt Jacobs
in the article “The Emergence of Classical Dynamics in
a Quantum World” on page 110—one can even recover
more or less classical trajectories by modeling a contin-
uous measurement. However, this is an extra ingredient
not in the spirit of the decoherence approach as it
invokes the measurement process without explaining it. 

A surprising corollary of this line of argument is the
realization (Zurek and Paz 1994) that the dynamical 
second law—entropy production at the scale set by the
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This numerical study (Habib et al. 1998) of a chaotic 
driven double-well system described by the Hamiltonian
H = p2/2m – Ax2 + Bx4+ Fx cos(ωt) with m = 1, A = 10, B = 0.5,
F = 10, and ω = 6.07 illustrates the effectiveness of decoher-
ence in the transition from quantum to classical. These
parameters result in a chaotic classical system with a
Lyapunov exponent λ ≅ 0.5. The three snapshots taken after
8 periods of the driving force illustrate phase space distribu-
tions in (a) the quantum case, (b) the classical case, and 
(c) the quantum case but with decoherence (D = 0.025).
The initial condition was always the same Gaussian, and in
the quantum cases, the state was pure. Interference fringes

are clearly visible in (a), which bears only a vague resem-
blance to the classical distribution in (b). By contrast,
(c) shows that even modest decoherence helps restore 
the quantum-classical correspondence. In this example the
coherence length llC is not much smaller than the typical 
nonlinearity scale, so the system is on the border between
quantum and classical. Indeed, traces of quantum interference
are still visible in (c) as blue “troughs,” or regions where the
Wigner function is still slightly negative. The change in color
from red to blue shown in the legends for (a) and (c) corre-
sponds to a change from positive peaks to negative troughs.
In the ab initio classical case (b), there are no negative troughs.
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dynamics of the system and more or less independent of
the strength of the coupling to the environment—is a
natural and, indeed, an inevitable consequence of deco-
herence. This point has been since confirmed in numeri-
cal studies (Miller and Sarkar 1999, Pattanayak 1999,
Monteoliva and Paz 2000).

Other surprising consequences of the study of Wigner
functions in the quantum-chaotic context is the realiza-
tion that they develop phase space structure on the scale
associated with the sub-Planck action a = h2/A << h,
where A is the classical action of the system, and that this
sub-Planck action is physically significant (Zurek 2001b).
This can be seen in Figure A part (a), where a small black
square with the area of h is clearly larger than the small-
est “ripples” in the image.

This point was to some extent anticipated by the plots of
the Wigner functions of Schrödinger cats [see
Figures 4(a) and 4(a′) in this article] a version of which
appeared in the 1991 Physics Today version of this
paper—the interference term of the Wigner function has
a sub-Planck structure. 

A lot has happened in establishing phase-space aspects
of quantum-classical correspondence, but a lot more
remains to be done. (A more thorough summary of the
past accomplishments and remaining goals can be found
in Zurek 2001b).

(b) (c)

Figure A. Decoherence in a Chaotic Driven Double-Well System



Classical equations of motion are a necessary but insufficient ingredient of the classical
limit: We must also obtain the correct structure of the classical phase space by barring all but
the probability distributions of well-localized wave packets. The last term in Equation (24)
has precisely this effect on nonclassical W(x,p). For example, the Wigner function for the
superposition of spatially localized wave packets—Figure 4(a)—has a sinusoidal modulation
in the momentum coordinate produced by the oscillating term cos((∆x/h)p). This term, how-
ever, is an eigenfunction of the diffusion operator ∂2/∂p2 in the last term of Equation (24).
As a result, the modulation is washed out by diffusion at a rate 

(26)

Negative valleys of W(x,p) fill in on a time scale of order τD, and the distribution
retains just two peaks, which now correspond to two classical alternatives—see Figures 4(a)
to 4(e). The Wigner function for a superposition of momenta, shown in Figure 4(a′), also
decoheres as the dynamics causes the resulting difference in velocities to damp out the
oscillations in position and again yield two classical alternatives—see Figures 4(b′) to 4(e′). 

The ratio of the decoherence and relaxation time scales depends on h2/m—see
Equation (19). Therefore, when m is large and h small, τD can be nearly zero—decoher-
ence can be nearly instantaneous—while, at the same time, the motion of small patches
(which correspond to the probability distribution in classical phase space) in the smooth
potential becomes reversible. This idealization is responsible for our confidence in classi-
cal mechanics, and, more generally, for many aspects of our belief in classical reality.

The discussion above demonstrates that decoherence and the transition from quantum
to classical (usually regarded as esoteric) is an inevitable consequence of the immersion of
a system in an environment. True, our considerations were based on a fairly specific
model—a particle in a heat bath of harmonic oscillators. However, this is often a reason-
able approximate model for many more complicated systems. Moreover, our key conclu-
sions—such as the relation between the decoherence and relaxation time scales in
Equation (19)—do not depend on any specific features of the model. Thus, one can hope
that the viscosity and the resulting relaxation always imply decoherence and that the tran-
sition from quantum to classical can be always expected to take place on a time scale of
the order of the above estimates.

Quantum Theory of Classical Reality

Classical reality can be defined purely in terms of classical states obeying classical laws.
In the past few sections, we have seen how this reality emerges from the substrate of quan-
tum physics: Open quantum systems are forced into states described by localized wave
packets. They obey classical equations of motion, although with damping terms and fluctu-
ations that have a quantum origin. What else is there to explain?

Controversies regarding the interpretation of quantum physics originate in the clash
between the predictions of the Schrödinger equation and our perceptions. I will therefore
conclude this paper by revisiting the source of the problem—our awareness of definite out-
comes. If these mental processes were essentially unphysical, there would be no hope of
formulating and addressing the ultimate question—why do we perceive just one of the
quantum alternatives?—within the context of physics. Indeed, one might be tempted to 
follow Eugene Wigner (1961) and give consciousness the last word in collapsing the state
vector. I shall assume the opposite. That is, I shall examine the idea that the higher mental
processes all correspond to well-defined, but at present, poorly understood information-
processing functions that are being carried out by physical systems, our brains.
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Described in this manner, awareness becomes susceptible to physical analysis. In partic-
ular, the process of decoherence we have described above is bound to affect the states of the
brain: Relevant observables of individual neurons, including chemical concentrations and
electrical potentials, are macroscopic. They obey classical, dissipative equations of motion.
Thus, any quantum superposition of the states of neurons will be destroyed far too quickly
for us to become conscious of the quantum “goings on.” Decoherence, or more to the point,
environment-induced superselection, applies to our own “state of mind.”

One might still ask why the preferred basis of neurons becomes correlated with the clas-
sical observables in the familiar universe. It would be, after all, so much easier to believe in
quantum physics if we could train our senses to perceive nonclassical superpositions. One
obvious reason is that the selection of the available interaction Hamiltonians is limited and
constrains the choice of detectable observables. There is, however, another reason for this
focus on the classical that must have played a decisive role: Our senses did not evolve for
the purpose of verifying quantum mechanics. Rather, they have developed in the process in
which survival of the fittest played a central role. There is no evolutionary reason for per-
ception when nothing can be gained from prediction. And, as the predictability sieve illus-
trates, only quantum states that are robust in spite of decoherence, and hence, effectively
classical, have predictable consequences. Indeed, classical reality can be regarded as nearly
synonymous with predictability. 

There is little doubt that the process of decoherence sketched in this paper is an impor-
tant element of the big picture central to understanding the transition from quantum to clas-
sical. Decoherence destroys superpositions. The environment induces, in effect, a superse-
lection rule that prevents certain superpositions from being observed. Only states that sur-
vive this process can become classical.

There is even less doubt that this rough outline will be further extended. Much work
needs to be done both on technical issues (such as studying more realistic models that could
lead to additional experiments) and on problems that require new conceptual input (such as
defining what constitutes a “system” or answering the question of how an observer fits into
the big picture).

Decoherence is of use within the framework of either of the two interpretations: It can
supply a definition of the branches in Everett’s Many Worlds Interpretation, but it can also
delineate the border that is so central to Bohr’s point of view. And if there is one lesson to
be learned from what we already know about such matters, it is that information and its
transfer play a key role in the quantum universe. 

The natural sciences were built on a tacit assumption: Information about the universe can
be acquired without changing its state. The ideal of “hard science” was to be objective and
provide a description of reality. Information was regarded as unphysical, ethereal, a mere
record of the tangible, material universe, an inconsequential reflection, existing beyond and
essentially decoupled from the domain governed by the laws of physics. This view is no
longer tenable (Landauer 1991). Quantum theory has put an end to this Laplacean dream
about a mechanical universe. Observers of quantum phenomena can no longer be just pas-
sive spectators. Quantum laws make it impossible to gain information without changing the
state of the measured object. The dividing line between what is and what is known to be has
been blurred forever. While abolishing this boundary, quantum theory has simultaneously
deprived the “conscious observer” of a monopoly on acquiring and storing information: Any
correlation is a registration, any quantum state is a record of some other quantum state.
When correlations are robust enough, or the record is sufficiently indelible, familiar classical
“objective reality” emerges from the quantum substrate. Moreover, even a minute interaction
with the environment, practically inevitable for any macroscopic object, will establish such a
correlation: The environment will, in effect, measure the state of the object, and this suffices
to destroy quantum coherence. The resulting decoherence plays, therefore, a vital role in
facilitating the transition from quantum to classical. 
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The quantum theory of classical reality has developed sig-
nificantly since 1991. These advances are now collectively
known as the existential interpretation (Zurek 2001a). The
basic difference between quantum and classical states is
that the objective existence of the latter can be taken for
granted. That is, a system’s classical state can be simply
“found out” by an observer originally ignorant of any of
its characteristics. By contrast, quantum states are hope-
lessly “malleable”—it is impossible in principle for an
observer to find out an unknown quantum state without
perturbing it. The only exception to this rule occurs when
an observer knows beforehand that the unknown state is
one of the eigenstates of some definite observable. Then
and only then can a nondemolition measurement
(Caves et al. 1980) of that observable be
devised such that another observer who
knew the original state would not notice
any perturbations when making a 
confirmatory measurement.

If the unknown state cannot be found
out—as is indeed the case for isolated
quantum systems—then one can make a
persuasive case that such states are sub-
jective, and that quantum state vectors are
merely records of the observer’s knowledge
about the state of a fragment of the Universe
(Fuchs and Peres 2000). However, einselection is
capable of converting such malleable and “unreal”
quantum states into solid elements of reality. Several ways to
argue this point have been developed since the early discus-
sions (Zurek 1993, 1998, 2001a). In effect, all of them rely
on einselection, the emergence of the preferred set of pointer
states. Thus, observers aware of the structure of the
Hamiltonians (which are “objective,” can be found out with-
out “collateral damage”, and in the real world, are known
well enough in advance) can also divine the sets of preferred
pointer states (if they exist) and thus discover the preexisting
state of the system.

One way to understand this environment-induced objective
existence is to recognize that observers—especially human
observers—never measure anything directly. Instead, most
of our data about the Universe is acquired when information
about the systems of interest is intercepted and spread
throughout the environment. The environment preferentially
records the information about the pointer states, and hence,
only information about the pointer states is readily available.
This argument can be made more rigorous in simple mod-
els, whose redundancy can be more carefully quantified
(Zurek 2000, 2001a).

This is an area of ongoing research. Acquisition of informa-
tion about the systems from fragments of the environment
leads to the so-called conditional quantum dynamics, a 
subject related to quantum trajectories (Carmichael 1993). 

In particular one can show that the predictability sieve also
works in this setting (Dalvit et al. 2001).

The overarching open question of the interpretation of quan-
tum physics—the “meaning of the wave function”—appears
to be in part answered by these recent developments. 
Two alternatives are usually listed as the only conceivable
answers. The possibility that the state vector is purely epis-
temological (that is, solely a record of the observer’s knowl-
edge) is often associated with the Copenhagen Interpretation
(Bohr 1928). The trouble with this view is that there is no
unified description of the Universe as a whole: The classical
domain of the Universe is a necessary prerequisite, so both

classical and quantum theory are necessary and 
the border between them is, at best, ill-defined.

The alternative is to regard the state vector
as an ontological entity—as a solid

description of the state of the Universe
akin to the classical states. But in this
case (favored by the supporters of
Everett’s Many Worlds Interpretation),
everything consistent with the universal
state vector needs to be regarded as

equally “real.”

The view that seems to be emerging from
the theory of decoherence is in some sense

somewhere in between these two extremes.
Quantum state vectors can be real, but only when the

superposition principle—a cornerstone of quantum behav-
ior—is “turned off” by einselection. Yet einselection is
caused by the transfer of information about selected 
observables. Hence, the ontological features of the state 
vectors—objective existence of the einselected states—is
acquired through the epistemological “information transfer.”

Obviously, more remains to be done. Equally obviously,
however, decoherence and einselection are here to stay. They
constrain the possible solutions after the quantum–classical
transition in a manner suggestive of a still more radical view
of the ultimate interpretation of quantum theory in which
information seems destined to play a central role. Further
speculative discussion of this point is beyond the scope of
the present paper, but it will be certainly brought to the fore
by (paradoxically) perhaps the most promising applications
of quantum physics to information processing. Indeed,
quantum computing inevitably poses questions that probe
the very core of the distinction between quantum and classi-
cal. This development is an example of the unpredictability
and serendipity of the process of scientific discovery:
Questions originally asked for the most impractical of 
reasons—questions about the EPR paradox, the quantum-
to-classical transition, the role of information, and the 
interpretation of the quantum state vector—have become 
relevant to practical applications such as quantum 
cryptography and quantum computation. �
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Ever since the advent of quantum mechanics in the mid
1920s, it has been clear that the atoms composing matter 
do not obey Newton’s laws. Instead, their behavior is

described by the Schrödinger equation. Surprisingly though, until
recently, no clear explanation was given for why everyday
objects, which are merely collections of atoms, are observed to
obey Newton’s laws. It seemed that, if quantum mechanics
explains all the properties of atoms accurately, everyday objects
should obey quantum mechanics. As noted in the box to the right,
this reasoning led a few scientists to believe in a distinct macro-
scopic, or “big and complicated,” world in which quantum
mechanics fails and classical mechanics takes over although 
there has never been experimental evidence for such a failure.
Even those who insisted that Newtonian mechanics would 
somehow emerge from the underlying quantum mechanics as the
system became increasingly macroscopic were hindered by the
lack of adequate experimental tools. In the last decade, however,
this quantum-to-classical transition has become accessible to
experimental study and quantitative description, and the resulting
insights are the subject of this article.

The Emergence of
Classical Dynamics
in a Quantum World

Tanmoy Bhattacharya, Salman Habib, and Kurt Jacobs



The demands imposed by quantum mechanics on the 
disciplines of epistemology and ontology have occupied
the greatest minds. Unlike the theory of relativity, the other
great idea that shaped physical notions at the same time,
quantum mechanics does far more than modify Newton’s
equations of motion. Whereas relativity redefines the con-
cepts of space and time in terms of the observer, quantum
mechanics denies an aspect of reality to system properties
(such as position and momentum) until they are measured.
This apparent creation of reality upon measurement is so
profound a change that it has engendered an uneasiness
defying formal statement, not to mention a solution. 
The difficulties are often referred to as “the measurement
problem.” Carried to its logical extreme, the problem 
is that, if quantum mechanics were the ultimate theory,
it could deny any reality to the measurement results them-
selves unless they were observed by yet another system,
ad infinitum. Even the pioneers of quantum mechanics had
great difficulty conceiving of it as a fundamental theory
without relying on the existence of a classical world 
in which it is embedded (Landau and Lifshitz 1965).

Quantum mechanics challenges us on another front as well.
From our intuitive understanding of Bayes’ theorem for
conditional probability, we constantly infer the behavior of
systems that are observed incompletely. Quantum mechan-
ics, although probabilistic, violates Bayes’ theorem and
thereby our intuition. Yet the very basis for our concepts 
of space and time and for our intuitive Bayesian view
comes from observing the natural world. How come the
world appears to be so classical when the fundamental the-
ory describing it is manifestly not so? This is the problem
of the quantum-to-classical transition treated in this article. 

One of the reasons the quantum-to-classical transition took
so long to come under serious investigation may be that it
was confused with the measurement problem. In fact, the
problem of assigning intrinsic reality to properties of indi-
vidual quantum systems gave rise to a purely statistical inter-
pretation of quantum mechanics. In this view, quantum laws
apply only to ensembles of identically prepared systems. 

The quantum-to-classical transition may also have been
ignored in the early days because regular, rather than
chaotic, systems were the subject of interest. In the former
systems, individual trajectories carry little information, and
quantization is straightforward. Even though Henri Poincaré
(1992) had understood the key aspects of chaos and Albert
Einstein (1917) had realized its consequences for the 
Bohr-Sommerfeld quantization schemes, which were 
popular at that time, this subject was never in the spotlight,
and interest in it was not sustained until fairly recently. 

As experimental technology progressed to the point at
which single quanta could be measured with precision,

Number 27  2002  Los Alamos Science  111

the façade of ensemble statistics could no longer hide
the reality of the counterclassical nature of quantum
mechanics. In particular, a vast array of quantum fea-
tures, such as interference, came to be seen as everyday
occurrences in these experiments. 

Many interpretations of quantum mechanics developed.
Some appealed to an anthropic principle, according to
which life evolved to interpret the world classically,
others imagined a manifold of universes, and yet others
looked for a set of histories that were consistent enough
for classical reasoning to proceed (Omnès 1994, Zurek
in this issue). However, by themselves, these approaches
do not offer a dynamical explanation for the suppression
of interference in the classical world. The key realization
that led to a partial understanding of the classical limit
was that weak interactions of a system with its environ-
ment are universal (Landau and Lifshitz 1980) and
remove the nonclassical terms in the quantum evolution
(Zurek 1991). The folklore developed that this was the
the only effect of a sufficiently weak interaction in
almost any system. In fact, Wigner functions (the closest
quantum analogues to classical probability distributions
in phase space) did often become positive, but they
failed to become localized along individual classical tra-
jectories. In the heyday of ensemble interpretations, this
was not a problem because classical ensembles would
have been represented by exactly such distributions.
When applied to a single quantum system in a single
experiment, however, this delocalized positive distribu-
tion is distinctly dissatisfying. 

Furthermore, even when a state is describable by a 
positive distribution, it is not obvious that the dynamics
can be interpreted as the dynamics of any classical
ensemble without hypothesizing a multitude of “hidden”
variables (Schack and Caves 1999). And finally, the
original hope that a weak interaction merely erases 
interference turned out to be untenable, at least in some
systems (Habib et al. 2000).

The underlying reason for environmental action to pro-
duce a delocalized probability distribution is that even if
we take a single classical system with its initial (or sub-
sequent) positions unknown, our state of knowledge can
be encoded by that distribution. But in an actual experi-
ment, we do know the position of the system because 
we continuously measure it. Without this continuous (or
almost continuous) measurement, we would not have 
the concept of a classical trajectory. And without a clas-
sical trajectory, such remarkable signals of chaos as the
Lyapunov exponent would be experimentally immeasur-
able. These developments brought us to our current view
that continuous measurements provide the key to under-
standing the quantum-to-classical transition. 

A Historical Perspective
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We will illustrate the problems involved in describing the quantum-to-classical
transition by using the example of a baseball moving through the air. Most often, we
describe how the ball moves through air, how it spins, or how it deforms. Regardless
of which degree of freedom we might consider—whether it is the position of the cen-
ter of mass, angular orientation, or deviation from sphericity—in the final analysis,
those variables are merely a combination of the positions (or other properties) of the
individual atoms. As all the properties of each of these atoms, including position, are
described by quantum mechanics, how is it that the ball as a whole obeys Newton’s
equation instead of some averaged form of the Schrödinger equation? 

Even more difficult to explain is how the chaotic behavior of classical, nonlinear sys-
tems emerges from the behavior of quantum systems. Classical, nonlinear, dynamical
systems exhibit extreme sensitivity to initial conditions. This means that, if the initial
states of two identical copies of a system (for example, particle positions and momenta)
differ by some tiny amount, those differences magnify with time at an exponential rate.
As a result, in a very short time, the two systems follow very different evolutionary
paths. On the other hand, concepts such as precise position and momentum do not make
sense according to quantum mechanics: We can describe the state of a system in terms
of these variables only probabilistically. The Schrödinger equation governing the evolu-
tion of these probabilities typically makes the probability distributions diffuse over time.
The final state of such systems is typically not very sensitive to the initial conditions,
and the systems do not exhibit chaos in the classical sense. 

The key to resolving these contradictions hinges on the following observation:
While macroscopic mechanical systems may be described by single quantum degrees
of freedom, those variables are subject to observation and interaction with their 
environment, which are continual influences. For example, a baseball’s center-of-mass
coordinate is continually affected by the numerous properties of the atoms composing
the baseball, including thermal motion, the air that surrounds it, which is also in ther-
mal motion, and the light that reflects off it. The process of observing the baseball’s
motion also involves interaction with the environment: Light reflected off the baseball
and captured by the observer’s eye creates a trace of the motion on the retina.

In the next section, we will show that, under conditions that refine the intuitive
concept of what is macroscopic, the motion of a quantum system is basically indistin-
guishable from that of a classical system! In effect, observing a quantum system pro-
vides information about it and counteracts the inherent tendency of the probability 
distribution to diffuse over time although observation creates an irreducible distur-
bance. In other words, as we see the system continuously, we know where it is and do
not have to rely upon the progressively imprecise theoretical predictions of where it
could be. When one takes into account this “localization” of the probability distribu-
tion encoding our knowledge of the system, the equations governing the expected
measurement results (that is, the equations telling us what we observe) become 
nonlinear in precisely the right way to recover an approximate form of classical
dynamics—for example, Newton’s laws in the baseball example. 

What happens when no one observes the system? Does the baseball suddenly start
behaving quantum mechanically if all observers close their eyes? The answer is hid-
den in a simple fact: Any interaction with a sufficiently complicated external world
has the same effect as a series of measurements whose results are not recorded. In
other words, the nature of the disturbance on the system due to the system’s interac-
tions with the external world is identical to that of the disturbance observed as an irre-
ducible component of measurement. Naturally, questions about the path of the
baseball can’t be verified if there are no observers, but other aspects of its classical
nature can, and do, survive.

The Emergence of Classical Dynamics in a Quantum World
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Classical vs Quantum Trajectories

Let us now turn to some significant details. To describe the motion of a single 
classical particle, all we need to do is specify a spatially dependent, and possibly time-
dependent, force that acts on the particle and substitute it into Newton’s equations. 
The resulting set of two coupled differential equations, one for the position x of the 
particle and the other for the momentum p, predicts the evolution of the particle’s state.
If the force on the particle is denoted by F(x, t), the equations of motion are

(1)

and

(2)

where V is the potential.
To visualize the motion, one can plot the particle’s position and momentum as they

change in time. The resulting curve is called a trajectory in phase space (see Figure 1).
The axes of phase space delineate the possible spatial and momentum coordinates that
the single particle can take. A classical particle’s state is given at any time by a point in
phase space, and its motion therefore traces out a curve, or trajectory, in phase space. 

By contrast, the state of a quantum particle is not described by a single point in phase
space. Because of the Heisenberg uncertainty principle, the position and momentum
cannot simultaneously be known with arbitrary precision, and the state of the system
must therefore be described by a kind of probability density in phase space. This
pseudoprobability function is called the Wigner function and is denoted by fW(x,p). As
expected for a true probability density, the integral of the Wigner function over position
gives the probability density for p, and the integral over p gives the probability density
for x. However, because the Wigner function may be negative in places, we should not
try to interpret it too literally. Be that as it may, when we specify the force on the parti-
cle, F(x, t), the evolution of the Wigner function is given by the quantum Liouville equa-
tion, which is

(3)

Clearly, in order for a quantum particle to behave as a classical particle, we must be
able to assign it a position and momentum, even if only approximately. For example, if
the Wigner function stays localized in phase space throughout its evolution, then the
centroid of the Wigner function1 could be interpreted at each time as the location of the
particle in phase space. 

                  

p = F(x,t) =  –∂xV(x,t)  , 
.

 

The Emergence of Classical Dynamics in a Quantum World

1 The centroid of the Wigner function is the point in phase space consisting of the mean 
values of x and p, that is (〈x〉, 〈p〉). 
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Moreover, the Liouville equation yields the following equations of motion for the
centroid:

(4)

and

(5)
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Figure 1. Potentials and
Phase-Space Trajectories
for Single-Particle Systems
The figure shows four systems
in which a single particle is 
constrained to move in a one-
dimensional potential. The four
systems are (a) a harmonic
oscillator, (b) a double well,
(c) a driven harmonic oscillator,
and (d) a driven double well, also
known as a Duffing oscillator.
As the potentials increase in
complexity from (a) to (d), so do
the phase-space trajectories.
In (c) and (d), the potential is
time dependent, oscillating back
and forth between the solid 
and dashed curves during 
each period. In (d), the force is
nonlinear, and the trajectory 
covers increasingly more of 
the phase space as time passes.

(a) Harmonic Oscillator

(b) Double Well

(c) Driven Harmonic Oscillator

(d) Duffing Oscillator
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where m is the mass of the particle. This result, referred to as Ehrenfest’s theorem,2 says
that the equations of motion for the centroid formally resemble the classical ones but
differ from classical dynamics in that the force F has been replaced with the average
value of F over the Wigner function. Suppose again that the Wigner function is sharply
peaked about 〈x〉 and 〈p〉. In that case, we can approximate 〈F(x)〉 as a Taylor series
expansion about 〈x〉:

(6)

where σx
2 is the variance of x so that σx

2 = 〈(x – 〈x〉)2〉. If the second and higher
terms in the Taylor expansion are negligible, the equations for the centroid become

(7)

and

(8)

And these equations for the centroid are identical to the equation of motion for the classi-
cal particle! If we somehow arrange to start the system with a sharply localized Wigner
function, the motion of the centroid will start out by being classical, and Equation (6) 
indicates precisely how sharply peaked the Wigner function needs to be. 

However, the Wigner function of an unobserved quantum particle rarely remains
localized even if for some reason it starts off that way. In fact, when an otherwise 
noninteracting quantum particle is subject to a nonlinear force, that is, a force with a
nonlinear dependence on x, the evolution usually causes the Wigner function to develop
a complex structure and spread out over large areas of phase space. In the sequence of
plots in Figure 2(a–d), the Wigner function is shown to spread out in phase space under
the influence of a nonlinear force. Once the Wigner function has spread out in this way,
the evolution of the centroid bears no resemblance to a classical trajectory. 

So, the key issue in understanding the quantum-to-classical transition is the 
following: Why should the Wigner function localize and stay localized thereafter? 
As stated in the introduction, this is an outcome of continuous observation 
(measurement). We therefore now turn to the theory of continuous measurements. 

Continuous Measurement

In simple terms, any process that yields a continuous stream of information may be
termed continuous observation. Because in quantum mechanics measurement creates 
an irreducible disturbance on the observed system and we do not wish to disturb the 
system unduly, the desired measurement process must yield a limited amount of infor-
mation in a finite time. Simple projective measurements, also known as von Neumann

F x F x F xx
x( ) = ( ) + ( ) +

σ
∂

2
2

2
K,
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2 According to Ehrenfest’s theorem, a quantum-mechanical wave packet obeys the equation
of motion of the corresponding classical particle when the position, momentum, and force
acting on the particle are replaced by the expectation values of these quantities.
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measurements, introduced in undergraduate quantum mechanics courses, are not ade-
quate for describing continuous measurements because they yield complete information
instantaneously. The proper description of measurements that extract information contin-
uously, however, results from a straightforward generalization of von Neumann meas-
urements (Davies 1976, Kraus 1983, Carmichael 1993). All we need to do is let the
system interact weakly with another one, such as a light beam, so that the state of the
auxiliary system should gather very little information about the main one over short
periods and thereby the system of interest should be perturbed only slightly. Only a very
small part of the information gathered by a projective measurement of the auxiliary sys-
tem then pertains to the system of interest, and a continuous limit of this measurement
process can then be taken. By the mid 1990s, this generalization of the standard meas-
urement theory was already being used to describe continuous position measurement by
laser beams. In our analysis, we use the methods developed as part of this effort. 

A simple, yet sufficiently realistic, analogy to measuring position by direct observa-
tion is measuring the position of a moving mirror by reflecting a laser beam off the mir-
ror and continuously monitoring the phase of the reflected light. As the knowledge of the
system is initially imprecise, there is a random component in the measurement record.
Classically, our knowledge of the system state may be refined to an arbitrary accuracy
over time, and the random component is thereby reduced. Quantum mechanically,
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Figure 2. Evolution of the
Wigner Function under a
Nonlinear Force
These four snapshots show
the Wigner function at differ-
ent times during the simula-
tions of the Duffing oscillator.
At t = 0, the Wigner function 
is localized around a single
point. As time passes,
however, the Wigner function
becomes increasingly 
delocalized under the nonlin-
ear potential of the Duffing
oscillator.
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however, the measurement itself disturbs the system, and our knowledge cannot 
be improved arbitrarily. As a result, the measurement record continues to have a 
random component. 

An equivalent way of understanding this random component is to note that 
the measurement process may be characterized by the rate at which information is
obtained. A more powerful measurement is one in which information is obtained at a
faster rate. Because of the Heisenberg uncertainty relation, if we obtain information
about position, we lose information about momentum. But uncertainty in momentum
turns into uncertainty in position at the very next instant. This random feedback 
guarantees that a continuous measurement will cause the system to be driven by noise:
The higher the rate at which information is obtained, the more the noise. For a position
measurement, the rate of information extraction is usually characterized by a constant,
k, that measures how fast the precision in our knowledge of position, 1/σx

2, would
increase per unit time in the absence of the accompanying disturbance. In the laser
measurement of position, k is determined by the power of the laser. The more powerful
the laser, the stronger the measurement, and the more noise introduced by the photon
collisions. 

Now we are in a position to see how and under what circumstances continuous meas-
urement transforms quantum into classical dynamics, resulting in the quantum-to-classical
transition. We can include the effects of the observation on the motion of the particle by
writing down a stochastic Liouville equation, that is, a Liouville equation with a random
component. This equation is given in the box “Conditions for Approximate Classical
Motion under Continuous Measurement” on the next page. The resulting equations of
motion for the centroid of the Wigner function are

(9)

and

(10)

where Cxp = (1/2)(〈xp〉 + 〈px〉 – 2〈x〉〈p〉) is the covariance of x and p, and ξ(t) is a
Gaussian white noise.3

We have now reached the crux of the quantum-to-classical transition. To keep the
Wigner function well localized, a strong measurement, or a large k, is needed. But
Equations (9) and (10) show that a strong measurement introduces a lot of noise. 
In classical mechanics, however, we deal with systems in which the amount of noise,
if any, is imperceptible compared with the scale of the distances traveled by the 
particle. We must therefore determine the circumstances under which continuous 
measurement will maintain sufficient localization for the classical equations to be
approximately valid without introducing a level of noise that would affect this scale 
of everyday physics. 

 

3 White noise is random noise that has constant energy per unit bandwidth at every frequency.
In reality, the actual recording of the measurement always occurs at a finite rate.  
So, effectively, the white noise gets filtered through a low-pass filter, which cuts out 
high frequencies.
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Conditions for Approximate Classical Motion

The evolution of the Wigner function fW for a single particle subjected to a continuous measurement of position is
given by the stochastic Liouville equation:

(1)

where F is the force on the particle, ξ is a Gaussian white noise, and k is a constant characterizing the rate of infor-
mation extraction. Making a Gaussian approximation for the Wigner function, which according to numerical stud-
ies is a good approximation when localization is maintained by the measurement, the equations of motion for the
variances of x and p, σx

2 and σp
2, are 

(2)

the noise has negligible effect in these equations when the Wigner function stays Gaussian.

First, we solve these equations for the steady state and then impose on this solution the conditions required for
classical dynamics to result. In order for the Wigner function to remain sufficiently localized, the 
measurement strength k must stop the spread of the wave function at the unstable points, ∂xF > 0:*

(3)

If noise is to bring about only a negligible perturbation to the classical dynamics, it is sufficient that, at a typical
point on the trajectory, the measurement satisfy

(4)

where s is the typical value of the system’s action† in units of h. Obviously, as s becomes much larger than
this relationship is satisfied for an ever-larger range of k. At the spot where this range is 

sufficiently large, we obtain the classical limit. 

* If the nonlinearity is large on the quantum scale, then 8k needs to be much larger than 

irrespective of the sign of ∂xF. This observation does not change the argument in the body of the paper. 

† We are assuming that both [mF2/(∂xF)2]|F/p| and E |p/4F| evaluated at a typical point of the trajectory are comparable to the

action of the system, and we define that action to be hs. 
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With analytical tools alone, this problem cannot be solved. However, one can take a
semianalytical approach by accepting two important results that come from numerical
simulations: (1) Any Wigner function localizes under a sufficiently strong measurement,
and (2) under such a measurement, once the Wigner function becomes localized, it is
approximately described by a narrow Gaussian at all later times. Therefore, we assume
a Gaussian form for the Wigner function, write the equations determining how the vari-
ances and covariances change with time, and solve those equations to find their values
in a steady state. Having all these ingredients, we can then find the conditions under
which the noise terms are small and the system remains well localized (see the box on
the opposite page). Our central conclusion is that a quantum system will behave almost
classically for an ever-increasing range of measurement strengths when the action of the
system is large compared with the reduced Planck constant h. 

This concept may be understood heuristically in the following way: Because of the
uncertainty principle, the effective area where the localized Gaussian Wigner function is
nonzero can never be less than h. If this limiting area is so large compared with the scale
of the problem that it cannot be considered localized, we certainly do not expect classical
behavior. Conversely, as long as the measurement extracts information at a sufficiently
low rate to avoid squeezing the Wigner function to a smaller scale than the limiting one,
the quantum noise remains on the scale of the variances themselves. As a result, the sys-
tem behaves almost classically. 

There are systems, however, whose phase space is sufficiently small for quantum
effects to be manifest or even dominant. This is true, for example, of isolated spin 
systems with small total angular momenta. Even when they are observed and interact-
ing with the environment, these spin systems are expected to be indescribable by the
classical laws of motion. A spin coupled to other degrees of freedom such as position
is a more interesting case, especially when the position of the system would have 
followed a classical trajectory in the absence of that interaction. To what extent, if at
all, that coupling stops position from following a classical trajectory is the subject 
of ongoing research (Ghose et al. 2002).

Chaos in a Quantum System under Continuous Observation 

As an illustration of these general ideas, we consider the Duffing oscillator, a single
particle sitting in a double-well potential and driven sinusoidally—see Figure 1(d). 
We chose this nonlinear system because it has been studied in depth and it allows us to
choose parameters that produce chaotic behavior over most of the system’s phase space.
Our test will indicate whether chaotic classical motion is a good approximate descrip-
tion of this quantum system when it is under continuous observation. To diagnose the
presence of chaos, we calculate the maximal Lyapunov exponent, the most rigorous
measure of chaotic behavior,4 and compare our calculated value for the quantum system
with the classical value.

The Hamiltonian for the particle in the double-well potential is

(11)

where m, A, B, Λ, and ω are parameters that determine the size of the particle and the

 

4 The maximal Lyapunov exponent is one of a number of coefficients that describe the rates at
which nearby trajectories in phase space converge or diverge. 
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spatial extent of the phase space. The action should be large enough so that the particle
can behave almost classically, yet small enough to illustrate how tiny it needs to be
before quantum effects on the particle become dominant. Bearing this requirement in
mind, we choose a mass m = 1 picogram, a spring constant A = 0.99 piconewton per
meter, a nonlinearity A/B = 0.02 square micrometer, a peak driving force of
λ = 0.03 attonewton, and a driving frequency ω = 60 rad per second. Because of the
weakness of the nonlinearity, the distance between the two minima of the double well 
is only about 206 nanometers, and the height of the potential is only 33 nano-electron-
volts. The frequency of the driving force is 10 hertz. For these values, a measurement
strength k of 93 per square picometer per second, which corresponds to a laser power of
about 0.24 microwatt, is adequate to keep the motion classical, or the Wigner function
well localized.

To study the system numerically, we allow the particle’s Wigner function to evolve
according to the stochastic Liouville equation for approximately 50 periods of the 
driving force and then check that it remains well localized in the potential. We find,
indeed, that the width of the Wigner function in position (given by the square root of 
the position variance σx

2) is always less than 2 nanometers. Thus the position of the par-
ticle is always well resolved by the measurement as the system evolves. In addition, an
inspection of the centroid’s trajectory shows that the noise is negligible. In order to ver-
ify that the motion is, in fact, that of a classical Duffing oscillator, we perform two tests.
The first is to plot a stroboscopic map showing the particle’s motion in phase space and
then compare that map with the corresponding one of the classical Duffing oscillator
driven by a small amount of noise. The observed quantum map and the classical map are
displayed in Figure 3. 

The two stroboscopic maps are very similar and show qualitatively that the quantum
dynamics under continuous measurement exhibits chaotic behavior analogous to classi-
cal chaos. To verify this finding quantitatively, we conduct a second test and calculate
the Lyapunov exponent for both systems. As we already mentioned, trajectories that are
initially separated by a very small phase-space distance, d(0), diverge exponentially as a
function of time in chaotic systems. The Lyapunov exponent λ, which determines the
rate of this exponential increase, is defined to be 

(12)

To calculate this exponent, we first choose a single fiducial trajectory in which 
the centroid of the Wigner function starts at the phase-space point given by 
〈x〉 = – 98 nanometers and 〈p〉 = 2.6 picograms micrometers per second (pg µm/s). 
At 17 intervals along this trajectory, each separated by approximately 20 periods of
the driving force, we obtain neighboring trajectories by varying the noise realization. 
We calculate how these trajectories diverge from the initial trajectory and average the
difference over the 17 sample trajectories. We then carry out this procedure for
10 fiducial trajectories, all starting at the same initial point but differing because of
different noise realizations. Plotting the logarithm of this average divergence as a
function of time results in a line whose slope is the Lyapunov exponent. In Figure 4,
we plot the logarithm of the average divergence for both the observed quantum system
and the classical system driven with a small amount of noise. The slope of the lines
drawn through the curves gives the Lyapunov exponent, which in both cases is
5.7(2) per second. To show that the noise has a negligible effect on the dynamics,
we also calculate the Lyapunov exponent for the classical system with no noise, using
trajectories starting in a small region around the point given by x = – 98 nanometers
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and p = 2.6 pg µm/s. Those trajectories give a Lyapunov exponent of 5.6(1) per 
second, which is in agreement with the previous value. 

Now we elaborate on the problem hinted at in the introduction. If observation 
realizes the classical world, do trees in remote forests fall quantum mechanically? 
Of course, the tongue-in-cheek answer is, “who knows?” At a deeper level, however,
we note that even in a remote forest, trees continue to interact with the environment,
and through this interaction, the components of the environment (reflected light, air
molecules, and so on) acquire information about the system. According to unitarity, an
important property of quantum mechanics, information can never be destroyed. The
information that flowed into the environment must either return to its origin or stay
somewhere in the environment—the decaying sound of the falling tree must yet record
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Figure 3. Stroboscopic
Maps for the Quantum
and Classical Duffing
Oscillators
The results of the Duffing 
oscillator simulations are 
plotted as stroboscopic maps.
(a) The map for the continu-
ously observed quantum
Duffing oscillator displays the
centroids of the Wigner func-
tion at time intervals separated
by the period of the driving
force. This map is a pastiche
from several different runs with
different initial conditions, for a
total duration of 39,000 periods
of the temporal drive. (b) The
map for the classical Duffing
oscillator driven with a small
amount of noise displays the
calculated locations of parti-
cles in phase space at time
intervals separated by the
period of the driving force.
The two maps are very similar.
The quantum system under
continuous measurement
exhibits qualitatively the same
chaotic behavior as the classi-
cal system driven with a small
amount of noise. In these 
figures, ∆X = 33 nm, and
∆P = 324 pg nm/s.

(a)

(b)
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its presence faithfully, albeit perhaps only in a shaken leaf. And herein lies the key to
understanding the unobserved: If a sufficiently motivated observer were to coax the
information out of the environment, that action would become an act of continuous
measurement of the current happenings even though actually performed in the future.
But since the current state of affairs can’t be influenced by what anyone does in the
future, the behavior of the system at present cannot contradict anything that such a 
classical record could possibly postdict. 

If the motion is not observed, no one knows which of the possible paths the object
took, but the rest of the universe does record the path, which could, therefore, be consid-
ered as classical as any (Gell-Mann and Hartle 1993). All that happens when there is no
observer is that our knowledge of the motion of the object is the result of averaging 
over all the possible trajectories. In that case, we are forced to describe the state of the
system as being given by a probability distribution in phase space since we no longer
know exactly where the system is as it evolves. This observation is, however, just as true
for a (noisy) classical system as it is for a quantum system.

The Connection to the Theory of Decoherence

We can now explain how the analysis presented here relates to a standard approach 
to the quantum-to-classical transition often referred to as decoherence. The procedure
employed in decoherence theory is to examine the behavior of the quantum system 
coupled to the environment by averaging over everything that happens to the environ-
ment. This procedure is equivalent to averaging over all the possible trajectories that 
the particle might have taken, as explained above. Thus decoherence gives the evolution
of the probability density of the system when no one knows the actual trajectory. 
The relevant theoretical tools for understanding this process were first developed and
applied in the 1950s and 1960s (Redfield 1957, Feynman and Vernon 1963), but more
recent work (Hepp 1972, Zurek 1981, 1982, Caldeira and Leggett 1981, 1983a, 1983b,
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Figure 4. Lyapunov
Exponents for the
Quantum and Classical
Duffing Oscillators
In order to calculate the
Lyapunov exponents, λ, for 
(a) a continuously observed
quantum Duffing oscillator 
and (b) a classical Duffing
oscillator driven with a small
amount of noise, we plot
against time the logarithm of
the average separation of 
trajectories that begin very
close together. The parameters
defining the oscillator—the
continuous-measurement
strength in the quantum 
system and the noise in the 
classical system—are detailed
on pages 119-–120  of this 
article. The slope of the line
drawn through the curves
gives the Lyapunov exponent,
which in both cases is
λ = 0.57(2). Also in both cases,
∆0 = 33 nm.
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Joos and Zeh 1985) was targeted at condensed-matter systems and a broader under-
standing of quantum measurement and quantum-classical correspondence. It was found
that averaging over the environment or over the equivalent, unobserved, noisy classical
system gives the same evolution (Habib et al. 1998). In this classical counterpart, differ-
ent realizations of noise give rise to slightly different trajectories, and in a chaotic sys-
tem, these trajectories diverge exponentially fast. As a result, probability distributions
obtained by averaging over the noise tend to spread out very fast, and our knowledge of
the system state is correspondingly reduced. In other words, discarding the information
that is contained in the environment or, equivalently, the measurement record, as averag-
ing over these data implies, leads to a rapid loss of information about the system. This
increasing loss of information, characterized by a quantity called entropy, can then be
used to study the phenomenon of chaos with varying degrees of rigor. 

Averaging over the environment to produce classical probability distributions was,
however, not completely satisfactory. Not only does this averaging procedure not allow
us to calculate trajectory-based quantities, but it also restricts our predictions to those
derivable by knowing only the probability densities at various times. But classical
physics is much more powerful than that—it can predict the outcome of many 
“if ... then” scenarios. If I randomly throw a ball in some direction, the probability 
of it landing in any direction around me is the same, but if you see the ball north of
me, you can predict with pretty good certainty that it won’t land south of me. In the
classical world, such correlations are numerous and varied, and the measurement
approach we have taken here completes our understanding of the quantum-to-classical
transition by treating all correlations on an equal footing. It is easy to see, however,
that if the continuous measurement approach has to get all the correlations right, it
must per force get the decoherence of probability densities right!

The realization that continuous measurement was the key to understanding the 
quantum-to-classical transition has emerged only in the last decade. First introduced 
in a paper by Spiller and Ralph (1994), this idea was then mentioned again by Martin
Schlautmann and Robert Graham (1995). Subsequently, the idea was developed in a col-
lection of papers (Schack et al. 1995, Brun et al. 1996, Percival and Strunz 1998, Strunz
and Percival 1998). However, the scientific community was slow to pick up on this
work, possibly because the authors used a stochastic model referred to as quantum state
diffusion, which may have obscured somewhat the measurement interpretation. In 2000,
we published the results presented in this article, namely, analytic inequalities that deter-
mine when classical motion will be achieved for a general single-particle system, and
showed that the correct Lyapunov exponent emerges (Bhattacharya et al. 2000). For this
purpose, we used continuous position measurement, which is ever present in the every-
day world and therefore the most natural one to consider. This accumulation of work
now provides strong evidence that continuous observation supplies a natural and satis-
factory explanation for the emergence of classical motion, including classical chaos,
from quantum mechanics. In addition, such an analysis also makes clear that the specific
measurement model is not important. Any environmental interaction that provides suffi-
cient information about the location of the system in phase space will induce the transi-
tion in macroscopic systems. Recently, Andrew Scott and Gerard Milburn (2001) have
analyzed the case of continuous joint measurement of position and momentum and of
momentum alone, and they verified that classical dynamics emerges in the same way as
described in Bhattacharya et al. (2000). �
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How can we  control quantum systems 
without disturbing them? 

Quantum Feedback Control 

The nanomechanical electrometer shown here was built in Michael Roukes’ group at Caltech.

It has a demonstrated sensitivity below a single electron charge per unit bandwidth and should

ultimately reach sensitivities of the order of parts per million. Its operation is based on the 

movement of a torsional resonator that carries a detection electrode placed in an external 

magnetic field. The gate electrode is seen on one side of the resonator.
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Ever since Niels Bohr’s first
attempt at understanding the
hydrogen atom, the fundamen-

tal cautionary lesson of quantum
mechanics has been driven home
time after time: Processes in the
microworld transpire according to
laws and principles that directly con-
tradict those governing the
macroworld of human experience.
This radical shift in understanding is
now almost a century old and has
been definitively confirmed by
numerous experiments. It might seem
likely that the strange behaviors of
quantum systems would be familiar
by now and practical devices har-
nessing those behaviors would be
commonplace. For the most part,
however, we have remained mere
spectators of the microphysical
realm, where quantum mechanics
holds sway, being forced to observe
naturally occurring phenomena rather
than being able to control and manip-
ulate them. In the coming decade,
however, this situation may be
reversed. 

Recent advances in quantum and
atomic optics and condensed matter
physics are providing tools to engi-
neer practical quantum devices and
perhaps even modestly complex 
networks of these devices. Quantum
information processing, precision
measurement, and development of
ultrasensitive sensors are driving 
the present development of quantum
technologies. If quantum technologies
are ever to achieve the complexity of
classically engineered systems such
as jet aircraft and the Internet,
a quantum analog of classical feed-
back control must be developed, since
feedback control is at the heart of the
stability and predictability underlying
complex engineered systems. 

Along these lines, recent theoreti-
cal results on error correction in 
quantum computation and on the
dynamics of open quantum systems
may be viewed as first steps in devel-
oping a theoretical formalism for
practical quantum feedback control
(see the articles “Introduction to
Quantum Error Correction” on 
page 188 and “Realizing a Noiseless
Subsystem” on page 260). Indeed,
feedback control represents a promis-
ing new approach to mitigating quan-
tum noise and decoherence in both
quantum computation and precision
measurement. If we are to apply the
concepts and methods of feedback
control theory to quantum dynamical
systems, we must not only extend
classical control concepts to new
regimes but also analyze quantum
measurement in a way that is useful
for control systems.

The Evolution of Control
Theory

Controlling natural phenomena
through macroscopic engineering goes
back thousands of years. Consider for
a moment the ingenious ways in
which early human civilizations con-
trolled irrigation. In Mesopotamia
(2000 BC), where rainfall was poor
and the Tigris and Euphrates Rivers
were the main sources of water, engi-
neers constructed an elaborate canal
system with many diversion dams (see
the drawing to the left). In that sys-
tem, the Euphrates served as a source
and the Tigris as a drain. In a similar
vein, the ancient Egyptians used water
from the Nile and thereby allowed
their civilization to flourish. On a
smaller scale, machines using feed-
back control were developed in the

Greco-Roman period, and methods for
the automatic operation of windmills
date back to the Middle Ages. 

Perhaps the best-known example
of feedback control in the industrial
era is the Watt governor, which stabi-
lizes steam engine speeds under fluc-
tuating loads. James Clerk Maxwell
provided the first dynamical analysis
of this system based on differential
equations. His work, which was 
published in 1868, founded the field
of mathematics now known as 
control theory. In the early part 
of the 20th century, the idea of self-
regulating machinery continued to be
pushed in various directions, notably
in electronic amplification. Control
concepts were further developed for
industrial, navigational, and military
applications. 

After World War II, control sys-
tems progressed to a new level of
complexity. Up until that time, feed-
back control systems had been largely
single loop, taking the feedback sig-
nal from one point and connecting the
correction signal to a different point.
Multiloop control systems and more-
sophisticated feedback techniques
emerged from progress in optimiza-
tion theory and dynamical systems
theory, as well as from the advent of
digital computers. 

After 1960, there emerged what is
often referred to as “modern” (as
opposed to “classical”) control theory
(Brogan 1990, Zhou et al. 1996),
which emphasizes optimization of
cost and performance. For the same
control goals, it is clear that not all
control strategies will be equally
effective in terms of cost and perform-
ance. Determining the best strategy
defines the problem of optimal con-
trol; however, optimal algorithms are
often unstable to variations in system 



parameters and the external environ-
ment. Theorists then turned to ensuring
performance bounds in the presence of
uncertainty. This work resulted in the
theory of “robust” control (Zhou et al.
1996). Noise in the inputs, extrinsic
disturbances in the system under con-
trol, measurement errors, and modeling
inadequacies—all can render control
systems less effective or, in some
cases, even lead to catastrophic fail-
ures. The role of robust control is to
maintain adequate stability and other
performance margins given the uncer-
tainties mentioned earlier. 

Classical Control Systems

Formally speaking, a control sys-
tem consists of a dynamical system
interacting with a controller, a device
that influences the state of the dynam-
ical system toward some desired end.
The objective may be to regulate the
flow of an industrial process, money,
energy, information, and so on. In a
“closed-loop,” or feedback, control
system, the controller uses outputs
from the dynamical system to monitor
and influence its interaction with that
dynamical system. For a linear
dynamical system, for example, such
a situation could be described by the
following equation:

(1)

where x is a vector describing the
state of the system, dW is a vector 
of Gaussian noise sources, and u is
the vector of inputs determined by 
the controller. The matrix A gives the
system’s deterministic motion, and B
and C describe, respectively, how the
noise and input vectors are coupled
into the system. A separate equation,
namely,

(2)

describes the continuous measurement

of system outputs by the controller. 
In each small time interval dt, the con-
troller obtains the measurement result
dy. That result is directly related to the
true state of the system by some linear
transformation H, but it also includes 
a Gaussian noise process V, which
serves to represent imperfections 
in the measurement. 

Examples of control systems can
be found in many applications. For
instance, servomechanisms are control
systems that use small control inputs
to produce changes in large mechani-
cal systems. In effect, the larger sys-
tems are “slaved” to the output of the
servomechanisms (for example, liquid
levels in reservoirs are controlled by
float valves). Feedback circuits are
used in ingenious ways in electronic
amplification to manipulate input and
output impedances and to improve the
linearity, distortion, and frequency
bandwidth of the output signal relative
to the input signal. 

In an “open-loop” control system,
the controller does not monitor 
the output of the dynamical system. 
A dynamical model for the system is
assumed, and control is applied with
the idea that the desired outcome will
actually be achieved. Open-loop

strategies are useful in situations in
which the system dynamics are known
precisely and vary only slowly.
Processes with long measurement
dead times are sometimes better suit-
ed to open-loop control methods than
to feedback methods. Open-loop con-
trol strategies are applied in situations
as diverse as the maximization of
returns from financial investments,
optimal determination of aircraft
flight paths, and controlled dissocia-
tion of molecules. 

Figure 1 shows how to implement
closed-loop control for a dynamical
system. One must be able to measure
some of the dynamical variables of
the system under control (the outputs)
and use them to influence some other
variables (the inputs). In other words,
given the output variables, the con-
troller implements a particular control
strategy to influence the state of the
dynamical system by appropriately
varying the inputs. Robust controllers
take into account variations in system
parameters and fluctuations from 
the external environment to produce
control strategies with guaranteed 
stability bounds. 

Control systems can involve many
different interacting physical systems

dy = Hxdt + RdV ,  

dx = Axdt + BdW + Cu  ,  
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Outputs

Feedback 
controller

Dynamical 
systemInputs

Measurement
errors

External perturbations,
parametric drifts, and uncertainties

Figure 1. Classical Feedback Control
The classical dynamical system to be controlled has a set of input variables, which
are processed by the system dynamics into a set of output variables. Some fraction
of the set of input and output variables (possibly different for each case) is available
for hookup to the controller. The controller has to perform in the presence of exter-
nal fluctuationsthat is, uncertainties and drifts in the parameters describing the
dynamical systemand measurement errors.



with a large number of sequential,
parallel, and nested control loops that
are both open and closed. For exam-
ple, closed- and open-loop strategies
can be combined as in the fast closed-
loop systems used to stabilize the
slower, inherently unstable open-loop
dynamics of modern fighter aircraft. 

Developing Control in
Quantum Systems

The general picture of control sys-
tems outlined in the previous section
appears to be extendable to quantum
systems. Certainly, open-loop control
problems are conceptually straightfor-
ward in the quantum context. One
begins with the time evolution opera-
tor of the quantum system—the
Schrödinger equation for the wave
function, the Liouville equation for the
density matrix, or more complicated
dynamical evolution equations for 
the density matrix characterizing a
system coupled to an environment. 
A theory for time-dependent variations
in the evolution operator is then devel-
oped in such a way that the wave 
function or the density operator at
some time is close to some target

value. This target value does not have
to be unique, nor in fact is the time
evolution to that value unique. The
approach just outlined applies equally
well to classical probabilistic evolu-
tions: Although quantum and classical
systems are dynamically distinct, the
principles for open-loop control are in
fact very similar. 

Controlling chemical reactions by
laser-produced electromagnetic fields
that are time dependent is a well-
known open-loop quantum control
problem. In the frequency-resolved
approach to control, the quantum
interference between different evolu-
tionary paths is being manipulated; in
the time-resolved approach, the
dynamics of wave packets produced
by ultrafast laser pulses leads to con-
trol. For some specific control of the
chemical reactions, one can optimize
the temporal and spectral structure of
those laser pulses (Shi et al. 1988). 

The fundamental differences
between classical and quantum systems
become real issues, however, in the
field of closed-loop control. Quantum
systems can have two distinct types 
of feedback control: directly and indi-
rectly coupled quantum feedback (see
Figure 2). As illustrated in Figure 2(a),

in a system with directly coupled quan-
tum feedback, a quantum variable of
the system is coupled to the quantum
controller, and a quantum input path
from the controller goes directly back
to the quantum system. When the
quantum feedback is indirect, as shown
in Figure 2(b), the quantum dynamical
system under control is an observed
system. It therefore generates a classi-
cal output, also known as the measure-
ment record, which the controller may
analyze to provide a best estimate of
the original quantum state of the sys-
tem. The controller then feeds back 
a classical signal to vary parameters 
in the quantum evolution operator 
in accord with the chosen control 
strategy. Hybrid couplings using both
direct and indirect quantum feedback
channels are easy to envisage: The
channel from the system output to 
the controller input may be directly
coupled whereas the channel from the
controller output to the system input
may be coupled indirectly through a
classical path. 

In both classical and quantum 
contexts, the main goal of closed-loop
control is to enhance system perform-
ance in the presence of noise from
both the environment and the 
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Figure 2. Directly and Indirectly Coupled Quantum Feedback
(a) Both the dynamical system and the controller are quantum systems coupled through a unitary interaction. A quantum 
variable is coupled to the quantum controller, and a quantum input path from the controller goes directly back to the quantum
system. (b) A quantum dynamical system can be viewed as having two sets of inputs, one relating to the variation in the classi-
cal parameters describing the Hamiltonian and the other representing fully quantum inputs. Similarly, the output channel can 
be divided into a quantum and a classical channel. The classical channel is, in fact, a piece of the quantum channel that 
has become classical after observation. The controller analyzes the classical record to form an estimate of the dynamical 
system’s state and uses this information to implement the appropriate control.
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uncertainty in the system parameters.
To limit the effects of noise, the 
controller must perform an irre-
versible operation. Noise generates a
large set of undesirable evolutions,
and the controller’s task is to map this
large set to a much smaller one of
more desirable evolutions. Mapping
from the larger to the smaller set is by
definition irreversible. In other words,
noise is a source of entropy for 
the system. To control the system, the
controller must extract the entropy
from the system under control and put
it somewhere else. The controller
must therefore have enough degrees
of freedom to respond conditionally
upon the noise realization. In indirect
quantum feedback control, the meas-
urement process, coupled with the
conditional response of the controller,
is the source of entropy reduction. 
In direct quantum feedback control,
the evolution of the system is fully
unitary, or quantum mechanical. The
quantum controller provides a large
Hilbert space of quantum mechanical
states. That is precisely where the
entropy generated by the noise may
be put (or where the history of the
effect of the noise on the system may
be stored). The quantum controller
then reacts conditionally to this 
quantum record, keeping the entropy
of the quantum dynamical system 
low, while the entropy of the storage
location grows continually. 

Inherent Noise Generation in
Quantum Feedback Control

Unlike classical systems, quantum
systems may be easily disturbed when
information about them is extracted.
Measurement disturbs a quantum 
system through the following intrinsic
property of quantum mechanics:
Obtaining accurate knowledge about
one observable of a quantum system
necessarily limits the information
about an observable conjugate to the

first. For example, particle position
and momentum are conjugate observ-
ables, and the uncertainties inherent 
in the knowledge of both are codified
by the famous Heisenberg uncertainty
relation. If the chosen feedback-
control strategy involves measure-
ment, one must take into account 
the effects of the measurement on 
the evolution of the quantum system.
A generally applicable model for
including those effects is that of a
continuous quantum measurement.
This model was developed for quan-
tum optics (Carmichael 1993), a field
in which such measurements have
been realized experimentally, and it
was also derived in the mathematical
physics literature with the help of
more abstract reasoning (Barchielli
1993). In this volume, the model of a
continuous quantum measurement is
presented in the article “The
Emergence of Classical Dynamics in a
Quantum World” on page 110. 

Quantum measurements may 
introduce unwanted noise in three
more-or-less distinct ways. First, one
may measure an observable conjugate
to the real variable of interest and
thereby introduce more uncertainty in
the latter variable. More generally,
one may attempt to obtain information
inconsistent with the state under con-
trol. For example, to preserve a state
that is the superposition of two posi-
tion states, position measurements
must be avoided because they will
destroy the superposition. Thus, in
quantum mechanics, the type of 
measurement chosen must be consis-
tent with the control objectives. This
condition is unnecessary in classical
feedback control. Second, if trying 
to control the values of observables
(Doherty et al. 2000), one must con-
sider that the time evolutions of differ-
ent observables necessarily affect each
other over time. Observables whose
values are uncertain at one time will
cause other observables (perhaps more
accurately known) to become uncer-

tain at a later time. For example,
a very accurate measurement of the
particle position at one time intro-
duces uncertainty into the value of the
particle momentum. Because the value
of momentum determines the position
of the particle at a later time,
the momentum uncertainty makes the
future position of the particle more
uncertain, hence introducing noise into
the quantity that is being measured.
This mechanism for introducing noise
is usually referred to as the back
action of a quantum measurement.

The third kind of noise involves 
the randomness of the measurement
results. Because the state of the
observed system after a measurement
depends upon the outcome of the
measurement, the more the result fluc-
tuates, the more noise there is in the
evolution of the system. For classical
measurements, fluctuations in meas-
urement results cannot be any more
than the entropy of the system before
measurement; that is, the measurement
does not introduce any additional
noise into the system. In quantum
mechanics, however, even if the sys-
tem state is known precisely, one can
still make measurements that change
the state in a random way, thereby
actually injecting noise into the sys-
tem. This observation is particularly
relevant when the overall state of the
system, rather than a specific observ-
able, is being controlled. The situation
is further complicated by the fact that,
for certain classes of measurements,
there is actually a tradeoff between the
noise injected by the measurement and
the information gained by the observer
(Doherty et al. 2001). As a result,
designing measurement strategies is
far from being a trivial activity.

Strategies for Quantum
Feedback Control

The differences between classical
and quantum measurements profoundly
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affect the design of feedback control
algorithms. A classical controller
extracts as much information from 
the system as possible. In quantum
control, irreducible disturbances are
inherent to any measurement, and
therefore the measurement strategy
becomes a significant part of the feed-
back algorithm. For example, just as
the inputs to the system change with
time, the measurements too may need
to be varied with time so that the best
control should be achieved. 

Adaptive measurement, or altering
the measurement as it proceeds, was
first introduced by Howard Wiseman
(1995), not for control but for 
accuracy. The result was a more 
accurate measurement of some aspect
of the quantum state. Nevertheless,
this approach has a unique bearing on
quantum feedback control algorithms.
Knowing that quantum measurements
can disturb the state being measured,
one may want to start a continuous
measurement process by measuring in
a way that is not necessarily optimal
but is sufficiently weak to cause 
minimal disturbance to the aspect 
of interest. As the measurement pro-
ceeds, one uses the continuously
obtained information about the state
to make the measurement increasingly
close to optimal. 

For example, consider measuring
the oscillation amplitude of a 
harmonic oscillator when the phase 
of the oscillation is unknown but 
the oscillator is known to be in an
amplitude-squeezed state; that is, the
uncertainty in amplitude or energy is
much smaller than the uncertainty in
phase, the conjugate variable (see
Figure 3). In this case, an accurate
measurement of amplitude is given
by a measurement of position at the
moment when the particle is at its
maximum spatial extent, or maxi-
mum distance from x = 0. On the
other hand, at the moment when the
particle has the most momentum (at
position x = 0), the ideal quantity to

measure is momentum. Thus, for a
continuous measurement of the oscil-
lation amplitude, a linear combina-
tion of position and momentum
should be measured and the relative
weighting of those two variables
should be allowed to oscillate in
time. However, without knowing 
the mean phase of oscillation, one
cannot know which variable should
have the most weighting in the meas-
urement at what time. Using an 
adaptive measurement procedure,
one can start by assuming the oscilla-
tor to have a particular phase and
then adjust the relative weights of
position and momentum to more
desirable values as information about
the phase is obtained. 

Applications of Quantum
Control

Atomic optics is one field in which
it should be possible to test quantum

feedback control in the near future. 
It has already been demonstrated that
a single atom can be trapped inside 
an ultralow-loss optical cavity (mirror
reflectivity is R = 0.9999984 in 
experiments at Caltech) in the strong-
coupling quantum regime (Mabuchi et
al. 1999). Figure 4 illustrates the
experimental setup used at Caltech.
The strong coupling occurs between
the atom and the radiation field in 
the cavity and is proportional to the
induced atomic dipole moment and
the single-photon cavity field.
Continuous measurements and real-
time feedback could be used to cool
such an atom to the “ground” state of
the quantized mechanical potential
produced by several photons in the
cavity. The average number of pho-
tons circulating inside such a cavity
can be kept very low (from 1 to
10 photons) if one uses a weak driv-
ing laser that barely balances the slow
rate at which individual photons leak
out. If the cavity mode volume is 
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Figure 3. “Squeezed” States for a Harmonic Oscillator
Squeezing may be illustrated by considering phase-space plots of a Gaussian wave
function. For a standard Gaussian state, the uncertainties in the x- and p-direction
are equal, and the uncertainty ellipse takes the shape of a circle, provided appropri-
ate position and momentum scalings are made. When states are “squeezed,” the area
of the uncertainty ellipse remains constant, but the ellipse is rotated and squeezed
as shown. Squeezing momentum, for example, means reducing the uncertainty in
momentum. The constant energy surface is the dashed circle, and the position on 
the circle can be specified by the angle. Squeezing phase and energy again refers 
to changes in shape of the uncertainty ellipse for the wave function.

Momentum
squeezing

Standard
Gaussian

Phase
squeezing

Position
squeezing

Number or
energy squeezing

x

p

θ

E



sufficiently small, just a few photons
can give rise to dipole (alternating-
current Stark shift) forces that are
strong enough to bind an atom near a
local maximum of the optical field
distribution. At the same time, the
atomic motion can be monitored in
real time by phase-sensitive measure-
ments of the light leaking out of the
cavity. To a degree determined by the
fidelity of these phase measurements,
the information gained can be used
continually to adjust the strength of
the driving laser (and hence the depth
of the optical potential) in a manner
that tends to remove kinetic energy
from the motion of the atomic center
of mass. 

In order to perform such a task in
real time, however, it is essential to
develop approximate techniques for
continuously estimating the state of
the atomic motion. Approximations
are needed because integrating a sto-
chastic conditioned-evolution equation
to obtain a continuous estimate of the
density matrix is far too complex a
task to be performed in real time.
While this experiment remains to be
carried out, we have developed an
approximate estimation algorithm1

and used it in combination with an
experimentally realizable feedback
algorithm (see Figure 5). 

Feedback cooling ideas can also be
applied to condensed-matter systems.
Some of our recent calculations pre-
dict that feedback control can be used
to cool a nanoresonator below the lim-
its set by refrigeration. This method
would reduce thermal fluctuations to
approximately the quantum energy
level spacing of the resonator. These
findings are important because
nanoscale devices are interesting from
a more fundamental perspective than
merely sensing and actuation applica-
tions. Provided they can be cooled to
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Figure 5. Simulating a Feedback Algorithm to Cool Atomic Motion in
an Optical Cavity
In this simulated experiment, the light forms an effective sinusoidal potential for the
atom, and the controller switches this potential between a high and a low value
(separated by some ∆V) to cool the atomic motion. In this simulation, the feedback
is turned on at t = 2, and the expected value of the atomic motion energy is plotted
here as a function of time for four different values of ∆V. Although these results are
still preliminary, they indicate that the effectiveness of the feedback algorithm is
highly dependent on ∆V.

Figure 4. Quantum Feedback in a Cavity Quantum Electrodynamics
Application
The dynamics between the atom and the photon field in the cavity can be modified
by continuous measurement of the light transmitted through the cavity (which bears
information about the evolving system state) and by continuous adjustment of the
amplitude/phase of the driving laser in a manner that depends on the measurement
results. Control objectives of fundamental interest include active cooling of the
motion of an individual atom, feedback-stabilized quantum state synthesis, and
active focusing of atomic beams for applications such as direct-write lithography.
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1 This algorithm is described in a yet unpub-
lished paper by Salman Habib, Kurt Jacobs,
Hideo Mabuchi, and Daniel Steck.



sufficiently low temperatures, low-
loss nanomechanical resonators would
be excellent candidates for the first
observation of quantum dynamics in
mechanical mesoscopic systems. Yet,
as mentioned above, in order achieve
this goal, we must reduce thermal
fluctuations to approximately the
quantum energy level spacing of the
resonator, a task which requires tem-
peratures in the range of millikelvins. 

To cool the position coordinate of
the nanoresonator, one needs a suit-
able scheme for continuous position
measurement. One practical method
of performing a continuous measure-
ment of a nanoresonator’s position is
to use a single-electron transistor
(SET)—see Figure 6. To make the
measurement, one locates the res-
onator next to the central island of 
the SET. When the resonator is
charged and the SET is biased so that
current flows through it, changes in
the resonator’s position modify the
energy of the central island, which
produces changes in the SET current.
The current therefore provides a con-
tinuous measurement of the position
of the resonator, a requirement for
implementing a linear feedback cool-
ing algorithm. A feedback force can
be applied to the resonator by varying
the voltage on a “feedback electrode,”
which is capacitively coupled to the
resonator (see Figure 6). The applied
voltage is adjusted so as to damp the
amplitude of oscillation. 

Experiments on nanomechanical
oscillators observed with SETs cur-
rently start at temperatures near
100 millikelvins. These oscillators
have fundamental frequencies f0 on 
the order of 1 to 100 megahertz. As a
concrete example, consider a practical
oscillator with f0 = 10 megahertz,
a length of 2 micrometers, and the
other two dimensions on the order of
100 nanometers. The effective mass 
of such an oscillator is roughly
10–19 kilograms. An achievable quality
factor, Q, is about 104. In order to

observe discrete quantum passage
from one oscillator energy level to
another, the thermal energy should be
on the order of the level spacing, that
is, kBT ~ hf0, which corresponds to an
effective temperature T = .24 mil-
likelvin. Habib, Jacobs, Asa Hopkins,
and Keith Schwab have shown that
feedback cooling applied to this 
system at an initial temperature 
T = 100 millikelvins can yield a final
temperature of T = 0.35 millikelvin. 
At this temperature, the aggregate
occupation number lies between zero,
the ground state, and one, the first
excited state of the nanomechanical
resonator. In other words, the system
is cold enough to allow observation 
of quantum “jumps.” Although our
calculations are based on certain ideal-
ized assumptions, those assumptions
are close enough to reality that 
experimentalists can hope to achieve
similar results. 

Another, seemingly paradoxical,
application of quantum feedback 
control techniques might be in sup-

pressing quantum dynamical effects
such as tunneling. A classical memory
device can be viewed as a two-state
system with the two states separated
by a finite energy barrier. At low tem-
peratures, there is a finite probability
of coherent or incoherent tunneling
from one minimum to the other.
Tunneling generates random memory
errors, but continuous measurement,
coupled with feedback, can suppress
it. One such scheme is described and
demonstrated in Andrew Doherty et
al. (2000). The Hamiltonian for the
double well is taken to be

(3)

where x and p are dimensionless posi-
tion and momentum. Choosing A = 2
and B = 1/9 puts the minima of the
wells at ±3 and gives a barrier height
of approximately 13.5. The controller
is allowed to continuously observe the
position of the particle and to apply a

H p Ax Bx= − +
1

2
2 2 4 ,
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Figure 6. Cooling a Nanomechanical Resonator
This schematic diagram illustrates a concept for cooling a nanomechanical res-
onator to millikelvin temperatures, at which we can possibly observe quantum
dynamics. An SET measures the position of the resonator, and a feedback mecha-
nism damps (cools) the resonator’s motion. The resonator, which is charged by 
the voltage source Vgate acts as the SET gate electrode. The resonator is also
capacitively coupled to the SET island (red) and feedback electrode. As it moves
back and forth relative to the SET island, the current Isd flowing through the SET
changes. Information about the changing current is used by the feedback circuitry
to charge the feedback electrode. A force is generated that damps the resonator’s
oscillations.



linear force in addition to the “double-
well” potential already present. The
continuous observation is described by
the equation

(4)

where dq is the measurement result 
in the time interval dt and k is a 
constant characterizing the accuracy, or
strength, of the measurement. 
The system is also driven by a thermal
heat bath in the high-temperature limit.
The effect of that bath is, in fact, the
same as that of a continuous quantum
measurement of position that ignores the
measurement result. When the bath is
described in this way, it is the strength of
the fictitious measurement that gives the
rate of thermal heating, and we will
denote this constant by β. 

Integrating a stochastic master equa-
tion gives the observer’s state of knowl-

edge as a result of the continuous meas-
urement. However, since this is a differ-
ential equation for the density matrix of
the single particle, it is numerically
expensive to integrate. For practical pur-
poses, one requires a simplified means
for calculating a state estimate. To
achieve this goal, we note that, as a
result of the continuous observation,
even though the dynamics are nonlinear,
the density matrix remains approximate-
ly Gaussian. When a Gaussian approxi-
mation is used, the stochastic master
equation reduces to a set of five equa-
tions (for all the moments of x and p up
to quadratic order), and so it provides us
with a practical method for obtaining a
continuous state estimate. In practice,
this Gaussian estimator can be shown to
work quite well; that is, mean values
from the approximate estimator agree
very well with mean values derived from
exact numerical solutions of the stochas-

tic master equation—see Figure 7(a). 
In addition to a state estimation

procedure, we also require a feedback
algorithm. If the system were linear,
one could apply the optimal tech-
niques of modern control theory to
find a feedback algorithm. Because
attempting an optimal control solution
for the full nonlinear problem is com-
putationally intractable, the idea is to
linearize the system dynamics around
the present estimate of the state 
with the further assumption that the
probability density, conditioned on 
the measurement record, remains
Gaussian. As long as position meas-
urements are sufficiently strong, this
last condition is satisfied. The impor-
tance of this condition is twofold:
Having a Gaussian approximation
does not only mean that a small num-
ber of moments (five) are needed to
describe the distribution but also that
the quantum propagator is very close
to the classical propagator at each
time step (for exactly Gaussian states,
the two are identical), and hence 
techniques borrowed from classical
control have an excellent chance of
working. The control can fail if the
measurement is too weak to maintain
a localized Gaussian distribution or 
if it is too strong. In the latter case,
the state is Gaussian, but the measure-
ment noise is too large.

The Gaussian state estimate is now
used to set the value of the feedback
term in the Hamiltonian (the sign and
the magnitude of the coefficient of the
linear feedback term in the potential).
By choosing appropriate strengths for
the measurement and the feedback
strength, one can show that the feed-
back scheme is effective in controlling
whether the particle is in the desired
minimum—see Figure 7(b). For this
plot, the measurement strength is 
k = 0.3, and the thermal heating rate is
d〈E〉/dt = β = 0.1. 

This scheme has limitations arising
from unwanted heating due to the
measurement. Although some of the

dq x dt
dV

k
= +    ,

8
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Figure 7. Particle in a Double Well Controlled by an Estimation-
Feedback Scheme
(a) Shown here, as a function of time, are the target position (blue line), the ‘true”
mean position (red line) obtained with the stochastic master equation (in which the
measurement strength k equals 0.3 and the thermal heating rate β equals 0.1), and
the position obtained with the Gaussian estimator (gray line). (b) The control
strength (size of applied force) is shown as a function of time.



heating derives directly from having 
to keep the state close to Gaussian, a
more general limitation also con-
tributes to heating: The measurement
must be sufficiently strong to provide
enough information for control to be
effective. Developing new estimation
and feedback schemes that can reduce
the measurement-induced heating rate
is an important area for future research.

Outlook for the Future

Most likely, ideas in quantum feed-
back control will first be tested in
condensed matter physics and in
quantum and atomic optics.
Experiments in atomic optics have
already furnished the cleanest tests
and demonstrations of quantum
mechanics in the last several decades.
These include violations of the Bell
inequalities, quantum teleportation,
quantum state tomography, quantum
cryptography, and single-atom inter-
ference. The ability to compare exper-
imental results with precise theoretical
benchmarks is a hallmark of these
tests. As these experiments become
increasingly sophisticated and com-
plex, one can envisage a passage from
“toy” demonstrations to real applica-
tions such as feedback control. The
more strongly coupled systems of
condensed matter physics are less
amenable to accurate theoretical pre-
diction. Nevertheless, experiments are
becoming comparable in quality to
early atomic optics experiments,
and the time is ripe for active interac-
tion between these two fields:
Theoretical development in quantum
optics, such as continuous measure-
ment and quantum control, can be
taken over to condensed matter con-
texts, most notably in nanotechnology.
As the size of the smallest structures
that can be fabricated by lithographic
techniques decreases, the need for
quantum mechanics becomes
inevitable. Since lithography is the

only way we know to create very
complex systems at reasonable cost,
it follows that a fundamental and 
predictive understanding of quantum
dynamics applicable to these systems
(whether coherent or incoherent) will
be required. It is also clear that, for
these systems to be designable and to
function reliably in an engineering
sense, further development of quan-
tum control theory will be necessary.

From a “more algorithmic” per-
spective, the Holy Grail is the devel-
opment of optimal and robust control
algorithms that are generally applica-
ble. So far, apart from the trivial case
in which the system dynamics are 
linear and the measurement strategy is
considered fixed (Doherty and Jacobs
1999), no such optimal algorithms
have been found for quantum feed-
back control. In classical control 
theory, optimal and robust control
algorithms exist for linear systems,
but only very few for nonlinear sys-
tems despite the best effort of control
theorists in the past few decades.
Nonlinear classical optimal control is
a very difficult problem indeed, and
probably intractable in most cases.
Systematic numerical search algo-
rithms for optimal strategies exist, but
these also become intractable for sys-
tems of reasonable size. Because the
dynamics of noisy and measured
quantum systems is inherently nonlin-
ear, the quantum control problem may
also be intractable (Doherty et al.
2000). However, in quantum dynam-
ics, nonlinearity is of a restricted 
kind, and the possibility of obtaining
general analytic results providing
optimal and robust algorithms for the

feedback control of quantum systems
remains an open problem. �
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Atom-Trap BECs
A new laboratory for studying superfluidity, quantum

fluctuations, and other quantum phenomena

Eddy M. E. Timmermans
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In October 2001, the field of ultracold-atom physics was honored with the
Nobel Prize in physics. It was awarded to Carl Wieman, Eric Cornell, and
Wolfgang Ketterle for the creation and study of dilute-gas Bose-Einstein

condensates (BECs). Never before had the BEC phase transition, predicted by
Einstein more than 70 years earlier, been observed in such a clear and unam-
biguous realization. By confining neutral atoms in a tiny magnetic trap and
cooling them to temperatures only nanokelvins above absolute zero, the Nobel
laureates and their colleagues had slowed the atoms down to the point at which
the individual wave functions begin to overlap and many thousands of atoms
suddenly occupy exactly the same single-particle quantum state. Coaxing boson-
ic atoms (atoms with integer spin) to condense into this coherent quantum state
had been the “holy grail” of the cold-atom physics community for almost two
decades. The quest had led to the development of extraordinarily clever trapping
and cooling techniques, including Zeeman slowing, magneto-optical trapping,
evaporative cooling, and time-orbital potential trapping. The achievement of the
first atomic BECs in the summer of 1995 has led to a remarkable sequence of
advances that continues unabated. 

At first, this article first provides a historical perspective on atom-trap BECs
and then focuses on the exciting experiments that are driving the field of 
cold-atom physics. Our historical overview stresses the long-range coherent
properties of BECs and the role BEC physics has played in the explication of
superfluidity in liquid helium. In discussing current work, we have selected a
line of research and a series of experiments that illustrate the enormous flexibili-
ty of the new atom-trap BEC technologies. These experiments were carried out
at the Massachusetts Institute of Technology (MIT), Yale University, and Max
Planck Institute of Physics in Munich, Germany. Their achievements suggest
intriguing prospects for future work in ultracold atomic physics in general and
at Los Alamos in particular. In fact, several Los Alamos scientists have already
contributed to the development of this field on an individual basis, and we
briefly mention those in the concluding section.

The opening figure, produced by Ketterle’s group at MIT, is taken from the
paper (Andrews et al. 1997) that provides the starting point for our discussion 
of the new avenues introduced by these advances. The figure is a direct optical
image of two ballistically expanding BECs showing a spatial interference 
pattern on a macroscopic scale. This pattern is a stunning confirmation that 
the phase coherence in atom-trap BECs is as complete as in optical lasers,
and therefore these condensates can be manipulated and used as atomic lasers,
that is, as coherent sources of atomic-matter waves. This is a unique prospect
for phase-coherent matter. 
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After we introduce and resolve an intriguing puzzle regarding the origin of the interfer-
ence pattern, we turn to a BEC experiment by the group of Mark Kasevich at Yale. This
experiment is interesting from a theoretical point of view because the BECs display both
laserlike and superfluid aspects of long-range phase coherence. The former is usually
reserved for a nonequilibrium system of noninteracting photons, whereas the latter is usu-
ally reserved for an equilibrium or near-equilibrium fluid of strongly interacting helium
atoms. Specifically, adjacent weakly linked BECs display laserlike spatial interference in
a manner that implies Josephson-junction-like phase dynamics between the BECs (Orzel
et al. 2001).

The purpose of the Yale experiment was not to probe coherent behavior but to induce
and observe quantum fluctuations in the conjugate variables of long-range phase versus
localized atom number. The group loaded the BECs into an optical lattice in which the
potential barriers separating the lattice wells serve as junctions. By gradually freezing
out the motion of the bosons through the junctions and observing the subsequent loss of
phase coherence, the scientists were able to infer an increased certainty in the number 
of atoms in each well, that is, the formation of number-squeezed states. A few months
later, the group of Theodore Hänsch in Munich, Germany (Greiner et al. 2002),
conducted a beautiful experiment that took this process to its limit. They observed 
the sudden disappearance of all phase coherence in a BEC trapped in an optical-lattice
potential, a direct demonstration of the Mott-insulator phase transition in which a 
partly coherent state becomes an all-localized state and the tunneling between wells
completely stops. This transition is somewhat analogous to the well-known Mott 
transition from a conducting phase to an insulating phase of electrons in a crystal lattice.

The success of these experiments is due in part to the fact that dilute-gas BECs, with
their long coherence lengths and slow evolution times, are readily manipulated and
observed with high-precision atomic and optical technologies. Atom-trap BECs have
become a remarkably flexible and transparent system for exploring complex many-body
phenomena. 

In introducing a theoretical view of these developments, we use a “pedestrian”
approach to the condensate description, drawing the comparison to single-particle quan-
tum mechanics wherever possible. This approach will make some of the more subtle
points of many-body condensate physics accessible to the nonspecialist. We end with an
assessment of the atom-trap BEC system for investigating fundamental issues in many-
body physics. 

Atom-Trap BECs—A Realization of Einstein’s Condensate

Einstein was the first to understand the quantum concept of particle indistinguishabil-
ity and to realize some of its far-reaching implications. He made the following predic-
tion: When a gas of noninteracting bosons, or particles with integer spin, is cooled
below a critical temperature, a significant fraction of the particles will suddenly find
themselves in the same lowest-energy single-particle state. (This is an example of a
many-body system that is “quantum degenerate,” a term signifying that the system’s
behavior is dominated by quantum statistics—that is, the statistics of indistinguishable
particles, either Bose statistics for particles with integer spin or Fermi statistics for parti-
cles with half-integer spin—as opposed to the Boltzmann statistics of classical systems.)
In the limit of zero temperature, all the noninteracting bosons would occupy exactly that
same ground state yielding a many-body state that we now call a BEC. 

Similarly, in the ground state of a dilute gas of bosons, almost all particles find them-
selves in the same single-particle quantum state. Much attention has been devoted over
the years to the study of such dilute-gas BECs because they are believed to provide a
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model for studying superfluidity in a more direct way. The term “superfluidity” denotes
a host of low-temperature fluid phenomena such as inviscid, or dissipationless, flow and
quantized vortices, all of which contradict our intuition for classical fluid behavior.
Interestingly, all condensed-matter superfluids such as helium-4, its fermion cousin 
helium-3, and the superconductors consist of strongly interacting particles and do not
resemble dilute-gas BECs in most of their particulars. However, we believe that their
superfluid nature arises from the property of long-range phase coherence, which they
share with the dilute-gas BECs. The concept of long-range phase coherence will be 
discussed later. For now, simply stated, it implies the existence of a complex-valued,
single-particle-like wave that characterizes the entire many-body system. 

In the case of a dilute BEC, the single-particle-like quantum wave (a wave function
that depends on the position of a single particle) can be identified with the wave func-
tion of the single-particle state that is occupied, on average, by more than one boson and
is also known as the multiply occupied single-particle state.1 Because almost all parti-
cles occupy that single-particle state at zero temperature, the dilute BEC exhibits almost
complete coherence. The dilute BEC is then the simplest superfluid system. In contrast,
the precise description of the quantum wave coherence of a strongly interacting 
superfluid is not straightforward. Although it is tempting, for instance, to associate 
the fraction of the fluid that is superfluid (and can flow without dissipation) with the
fraction of the atoms that occupy the lowest-energy single-particle state, that assumption
turns out to be wrong. At zero temperature, the helium-3 fluid is all superfluid, whereas
only 10 percent of the atoms occupy the zero-momentum state. 

Questions regarding the strong interaction effects and the role of quantum fluctua-
tions in reducing the phase coherence and superfluid fraction remain of interest. Against
this backdrop, it may be worth noting that the optical-lattice BEC experiments described
below give unprecedented control of such quantum fluctuations. 

The current atom-trap BECs are dilute in a sense that we will specify shortly. Their
experimental achievement represented the first unambiguous realization of dilute BECs.
They are made from neutral alkali atoms (sodium, rubidium, lithium, and more recently,
hydrogen) that are trapped and cooled with a combination of optical and magnetic fields.
(See “Experiments on Cold Trapped Atoms” on page 168 for a description of trapping
and cooling processes.) The alkali atoms chosen consist of an even number of fermions
(protons, neutrons, and electrons) giving a total spin that has an integer value. These
“composite” bosons exhibit the same type of “gregarious” behavior that Einstein predict-
ed for noncomposite bosons. Indeed, the experimenters knew that a BEC had formed
when they saw evidence for a sudden increase in the number of atoms occupying the
same single-particle ground state at the center of the trap (see Figure 1). This “condensa-
tion” is quite different from the familiar liquid-vapor phase transition seen in water, for
example. The particle wave functions overlap perfectly, and the behavior of this degener-
ate Bose-Einstein gas, or condensate, becomes exquisitely sensitive to the interparticle
interactions even if the system is dilute. The spatial extent of the multiply occupied 
single-particle wave function is determined by the competition of the effective interparticle
repulsion and the trapping potential that confines the atoms. In present-day experiments,
the size of the BEC can be as large as one-tenth of a millimeter. In other words, the 
multiply occupied single-atom wave function describing the BEC is macroscopic.

Although Bose-Einstein condensation had never been directly observed before 1995,
this phase transition served as a textbook example in statistical mechanics (Huang 1987)
because it is one of the few phase transitions that can be described analytically. 
As Einstein himself stressed (Pais 1979), this remarkable transition follows solely from
the quantum-mechanical concept of particle indistinguishability, unlike the usual phase
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transitions, which result from a competition between interactions and entropy (disorder). 
The neutral atom-trap systems are extremely dilute. Like billiard balls, they feel 

each other’s presence only when they are separated by a distance equal to or less than 
a particular length. This length, known as the scattering length a, takes on different 
values for different atomic species—or even for the same species in different atomic
states—but for most of the trapped neutral alkali atoms, its value is positive (reflecting
an effectively repulsive force between the particles), and it tends to be about 1 nanome-
ter. We characterize the “diluteness” of the gas by visualizing the atoms as hard spheres
of radius a and computing the fraction of the total volume occupied by the spheres,
(4π/3)na3, also called the “packing fraction.” In the current atom-trap BECs, the packing
fraction ranges from one part in a million to one part in a billion. 

At that diluteness, almost all atoms are phase coherent in the zero-temperature Bose-
condensed state, somewhat in the manner that the photons produced through stimulated
emission into a single mode of an optical-laser cavity are phase coherent. That is, all
particles behave according to the same coherent wave function, and the particles can
exhibit macroscopic interference. Contrary to the optical-laser system, the BECs consist
of mutually interacting particles that are conserved (that is, the total number of atoms
remains constant) and that can relax to an equilibrium state, in which case the long-
range phase coherence gives rise to superfluid behavior. Indeed, in the last three years,
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Figure 1. The First 
Atom-Trap BECs
Some of the first signatures of
Bose-Einstein condensation
were obtained in a dilute gas of
trapped rubidium atoms in the
groups of Wieman and Cornell.
Shown in (a) are the shadow
(absorption) images of the den-
sity profile of the trapped atoms
and in (a′) the cross sections of
the local density. Both data
sequences were obtained with
varying values of the cutoff
energy used in the evaporative
cooling, the final stage in cool-
ing the trapped atoms. In evapo-
rative cooling, atoms of energy
above the cutoff, indicated in
megahertz, were removed from
the trap. As the cutoff energy
decreases, the final temperature
to which the system equilibrates
is lowered. Below a critical
value, a sharp peak appears in
the density profile, a signal that
Bose-Einstein condensation has
occurred. As the gas was con-
tained in an asymmetric (cigar-
shaped) trap, the shape
observed in (a) provides an
independent signature. The left-
most frame shows a spherically
symmetric thermal cloud; the
middle frame shows an asym-
metric density spike correspon-
ding to the condensate sur-
rounded by a thermal cloud; and
the rightmost frame shows the
final density spike in which most
of the atoms have Bose-con-
densed. (b) These shadow
images from Ketterle’s group
show a BEC in sodium. The
number of trapped atoms is
greater than that in (a) by about
a factor of 100. The density of
the condensate grows with
decreasing temperature from left
to right. (b′) These density plots
show cuts through an atomic
cloud as the condensate devel-
ops. Note that the spatial extent
of the condensate is about
0.1 mm. The size reflects the
macroscopic nature of the sys-
tem. It increases with the scat-
tering length defined in the text.
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experiments have definitively shown that the atom-trap BECs exhibit the defining behav-
ior of a superfluid such as sustained superflow (or dissipationless flow), zero resistance to
an object moving through the condensate, and quantized vortices. 

Most BEC experiments are carried out with no more than a hundred thousand to a few
million atoms. The difficulties encountered in increasing the particle number currently
limits the prospects for practical applications somewhat. On the other hand, the atom-trap
BEC technology has become fairly routine—more than 20 experimental groups have
achieved BECs by now. The extraordinary flexibilities offered by the available atomic,
molecular, and optical technologies, as well as by the imaging techniques, provide the
BECs with advantages that are unique in low-temperature physics. 

Aspects of BEC Dynamics

We will explore a bit further the two quantum concepts that are central in understand-
ing BECs and the sense in which superfluid behavior of the BECs represents the behavior
seen or inferred in liquid helium and other systems, including nuclei, subnuclear systems
produced in accelerators, and neutron stars. Those two central concepts are particle indis-
tinguishability and coherent wave behavior. 

Particle Indistinguishability. It was Einstein who realized that the statistics Bose
devised to understand the Planck spectrum of black-body radiation involved counting the
number of ways in which particles (in that case, photons) can be distributed over single-
particle states (called “subcells” in Einstein’s thermodynamic treatment). The Bose
counting presumed the particles to have a distinctly nonclassical quality. Whereas the tra-
jectories of classical particles can always be followed so that the particles can be distin-
guished from each other, Bose counting assumed particles to be fundamentally indistin-
guishable. Einstein extended the counting technique for photons, whose particle number
is not conserved, to a gas of conserved noninteracting particles, and he showed that the
indistinguishability implies a sudden increase in the number of particles occupying the
specific subcell/single-particle state of lowest energy: the BEC phase transition. 

Coherent Wave Behavior. A BEC’s coherent wave behavior follows directly from the
time evolution of the multiply occupied single-particle state. In quantum mechanics, the
one-particle system evolves according to Schrödinger’s wave equation. As a consequence,
the single-particle system can exhibit the type of interference seen in Young’s classic 
double-slit experiment, which proved that light was a wave phenomenon (see the box
“The Double-Slit Experiment”). In the quantum interpretation, light and atoms exhibit
both particle and wave behavior, and the interference results from the uncertainty in
knowing which of two possible trajectories the particle or the photon followed in reach-
ing the detector. (Put another way, the particle can simultaneously follow two different
paths to reach the screen; that is, it can exist in a superposition of probability amplitudes
A1 and A2, one for each path. The probability of finding the particle at the detector is
given by the square of the amplitude A1 + A22, which exhibits interference that is due to
the A1A2

* + A1
*A2 contribution.) Depending on the location at which the particles hit the

detector, the probability amplitudes for each path add up constructively or destructively,
respectively increasing or decreasing the probability. 

As explained in the box, the observation of an interference pattern, even with light,
can represent an experimental challenge. Many particles (or photons) must pass through
the slits for the pattern to be seen, and if the particles (photons) occupy different single-
particle states, the interference washes out, and the probability becomes a single blob
without the spatial oscillations that signal interference. In the BEC case, as in an optical-
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In 1802, Young devised and performed the double-slit
experiment, which disproved Newton’s particle theory of
light and established unequivocally that light is a wave
phenomenon. In that experiment, two holes punched in a
screen allowed incident light to pass through. The light
intensity reaching a second screen located behind the first
was then recorded, and under the right conditions, it was
possible to observe interference fringes (an intensity 
pattern that oscillates in space), giving unmistakable proof
of the wave nature of light. 

To understand the origin of the interference fringes, we
imagine the light to be perfectly monochromatic (charac-
terized by a single wavelength or frequency) and to be
emitted in a direction perpendicular to the screens from a
point source an infinite distance away (see Figure A). In
that case, the incident light consists of plane waves with
wave fronts parallel to the screen. The light reaching a
specific position on the second screen has traveled in a
straight line from either hole, and the difference in dis-
tance traveled determines the difference in phase of both
light rays reaching the screen. If the difference in distance
traveled by each ray is equal to an integer number of
wavelengths, the waves originating from each hole are in
phase, which means that their instantaneous electric-field
vectors point in the same direction. The total electric field,
which is the vector sum of both fields, then has a magni-
tude equal to the sum of the magnitudes. In contrast, if the
difference in distance is equal to an odd number of half-
wavelengths, the waves are out of phase, meaning that the
electric-field vectors of the rays that passed through the
different slits point in opposite directions and that the
magnitude of their vector sum is less than that of the light
from a single hole. In fact, they can completely cancel
each other out, giving a vanishing intensity. In the first
case, the waves are said to add up constructively, and 
the intensity, which is proportional to the square of the
magnitude of the total electric-field vector, appears bright;
in the latter case, the waves add up destructively, and the
intensity appears dim. Varying the position on the second
screen causes the difference in distance from both holes to
vary and the intensity to go through a series of maxima
and minima, corresponding to, respectively, constructive
and destructive interference. 

In a realistic two-slit experiment, the incident waves are
not perfectly monochromatic, and the source of light is
not a perfect point source. Whether the interference pat-
tern can be distinguished in the recorded intensity actually
depends on the details of the experiment, such as the 
distance between the slits. Loosely speaking, optical
coherence refers to the ability of the light to exhibit such
interference. Mathematically, the contrast is specified by

measurements of the highest (Imax) and lowest (Imin)
intensities. The visibility of the fringes, defined as the
ratio (Imax – Imin)/(Imax + Imin), provides a measure of
light coherence. For laser light, the slits can be as far apart
as the width of the laser beam and still produce an inter-
ference pattern with a visibility near unity. In the quantum
description of the laser, nearly all photons are said to be in
the same state. In contrast, thermal light contains photons
in different states, each of which would give a different
interference pattern with interference fringes at different
positions. The recorded pattern is a sum of all the interfer-
ence patterns, and the fringes at different positions can
wash each other out. 
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The Double-Slit Experiment—A Quantitative Measure of Coherence 
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Figure A. Diagram of Double-Slit Experiment
A plane wave incident on the first screen passes through 
the two slits and is stopped by the second screen. The light
intensity at a specific position on the second screen depends
on the difference in the path lengths traveled by the light
waves emanating from the two slits to that position. If the
path length difference is equal to an odd number of half
wavelengths, the spot appears dim (low intensity); if it is
equal to an integer number of wavelengths, the spot appears
bright (high intensity). The path length difference varies along
the straight line shown in the plane of the second screen.
Along this line, the intensity passes through positions of con-
structive and destructive interference, giving an oscillatory
intensity variation, called interference fringes.



laser system, most particles occupy the same state so that the many-particle system
exhibits the interference pattern of the single-particle system. We call this property
“coherent wave behavior.” As mentioned previously, it is the essential property that 
the weakly interacting BEC has in common with the strongly interacting superfluids 
such as helium. 

Classical or Mean-Field Description of BEC Dynamics. Current atom-trap BECs
have packing fractions of about one part in a million to one part in a billion. At that
diluteness, almost all the neutral atoms of a near-equilibrium system at near zero tem-
perature occupy the same single-particle state. The many-body system can therefore be
approximated by an N-particle wave function consisting of a product of single-particle
wave functions:

(1)  

where the single-particle χ-function is a complex-valued quantity:

(2)

In 1927, shortly after the discovery of quantum mechanics, Erwin Madelung pointed
out that the behavior of the single-particle wave function was analogous to that of a
fluid in which |χ(r;t)|2 plays the role of the single-particle density and (h/m)∇θ is asso-
ciated with a velocity. Similarly, in BEC physics, where the single-particle wave func-
tion is multiply occupied, the phase of the single-particle wave function, θ, plays a cru-
cial role in the theory as the single phase that gives rise to all the coherent wave phe-
nomena discussed below. In particular, its gradient describes the velocity associated with
the dissipationless flow observed in superfluid systems. 

The product state in Equation (1) is a special case of the Hartree-Fock Ansatz for the
many-body wave function of identical particles, and it evolves according to a Hartree-
Fock equation of motion. If the boson particles of mass m experience an external trap-
ping potential V, so that the potential energy of a single boson at position r is V(r), and
if the bosons interact with each other through an interaction potential v, so that a pair of
bosons located respectively at r and r′ experience an additional energy v(r – r′), then
the Hartree-Fock equation takes on the following form:

(3)

Because the interaction between neutral atoms in a BEC has a much shorter range than
the length scales on which the atom-trap BECs vary, we can approximate the interpar-
ticle potential by an effective contact interaction, v (r – r′) → λδ (r – r′), where the
interaction strength λ is proportional to the scattering length a: λ = (4πh2/m)a. In
addition, the number of particles is large enough to allow approximating (N – 1) by N.
We then introduce the condensate field Φ as Φ = N1/2χ so that |Φ|2 represents the 
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particle density, as it does in the single-particle case. With these quantities, the
Hartree equation for atom-trap BECs takes on the form of the celebrated Gross-
Pitaevski equation:

(4)

This equation, first derived by Pitaevski to treat superfluid vortices in a full quan-
tum description, has been very popular in many fields of physics (and even biology).
In spite of its simplicity, it has solutions that exhibit crucial nonlinear physics phe-
nomena such as solitary waves, self-focusing, and self-trapping. As a result, the atom-
trap BECs can also be regarded as new laboratories for studying nonlinear dynamics. 

Describing the physics of BECs by means of the Gross-Pitaevski equation—
Equation (4)—is known as “making the mean-field approximation” or “working in 
the classical approximation.” The term “classical” may appear out of place because
Equation (4) implies that matter has wavelike behavior, and it implicitly contains the
Planck constant. Nevertheless, this equation also follows from the Lagrange equations
of the corresponding classical field theory without any quantization condition. The
Gross-Pitaevski equation gives a classical description of BECs in the same sense that
Maxwell’s equations provide a classical description of photon dynamics. Perhaps most
significantly, the Gross-Pitaevski equation provides the simplest possible description
of a superfluid system, and the mean-field approximation (which for BECs is equiva-
lent to assuming a product wave-function solution) captures many of the essential 
features of superfluidity. For instance, the mean-field treatment predicts a dispersion
relation, or excitation spectrum, that satisfies Landau’s criterion for dissipationless
flow (a criterion to which we refer below). On the other hand, the Gross-Pitaevski
equation is certainly not as general as the phenomenon of superfluidity. Although
some long-range behavior of the helium superfluids and superconductors can be quali-
tatively understood when this equation is invoked, the atom-trap BECs are the only
systems quantitatively described by it. Moreover, the classical description also breaks
down for BECs, for example, when quantum fluctuations become important, as they
do in the experiments described at the end of this article. Those experiments involve
number-squeezed states and the Mott transition from a coherent, or superfluid, state 
to a localized state. 

The Coherent Wave Nature of Superfluidity

The term “superfluidity” was first applied to a very low temperature phase of liquid
helium. In 1938, Peter Kapitza and, independently, John Allan and Donald Misener
discovered that below a critical temperature of 2.2 kelvins, liquid helium-4 flows
without measurable dissipation through capillary tubes. It seemed that this low-tem-
perature phase of helium-4, called HeII, is not governed by the usual laws of classical
fluid dynamics. Subsequent experiments uncovered other counterintuitive phenomena
in HeII, including the fountain effect, perfect heat conductivity, and persistent circular
flow. Superfluidity is now the name for both this collection of phenomena and the
state of matter responsible for them. 

The superfluid state was so unusual and its mechanism so difficult to discern in the
relatively inaccessible medium of a strongly interacting fluid that its origin remained a
matter of continuing controversy for more than two decades.
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Is HeII like a BEC? Noting that helium-3, the fermion cousin of helium-4, did not
undergo a phase transition to a superfluid at similar temperatures, Fritz London 
suggested in 1938 that the HeII transition is intimately related to the boson nature of 
the helium-4 atoms. He further proposed that the HeII superfluid is, in a generalized
sense, a BEC. Of course, being a strongly interacting fluid, the helium system cannot
be characterized by the assumption that all atoms occupy the same single-particle 
state. Nevertheless, London (1938) argued that “some of the general features of the
degenerate ideal Bose-Einstein gas remain intact, at least qualitatively, for this liquid.”
He also offered support for his thesis by calculating the BEC critical temperature for
the helium density, which came out to 3.13 kelvins, remarkably close to the HeII
transition temperature of 2.12 kelvins, measured in 1933. Although the latter agreement
is largely fortuitous, London’s words sound almost prophetic in retrospect: He hinted
that the superflow in HeII was a macroscopic quantum current brought about by
changes in the boundary conditions. 

The Two-Fluid Description of HeII. Following a different track, Lev Landau and,
independently, Laszlo Tisza (who was, in fact, partly motivated by London’s views)
proposed the two-fluid model of HeII, in which one component is an inviscid, irrota-
tional superfluid that does not carry entropy. This model explained the observed
effects and also correctly predicted new superfluid phenomena, such as second sound.
Landau used very general assumptions to derive a criterion for superfluidity and an
expression for the critical velocity above which dissipation would set in. The critical-
velocity calculation, although ultimately incorrect, captured the main features of 
persistent flow, and a generalized form of the Landau criterion is still of great use in
explaining critical velocities for superfluidity. Nicolai Nicolaevich Bogoliubov
showed that a weakly interacting BEC satisfies Landau’s criterion for superfluidity,
but Landau continually resisted the notion that the superfluid should be associated
with a BEC. 

The BEC Description Revisited. Finally, Oliver Penrose (1951) and then 
Penrose and Lars Onsager (1956) proposed the currently accepted point of view that
superfluidity is a macroscopic manifestation of coherent (hence, single-particle-like)
quantum-wave behavior. This description does not contradict the two-fluid model 
but supersedes it in the sense that the coherent quantum-wave behavior includes 
phenomena, such as quantized vortices and Josephson effects, which find no 
explanation in the two-fluid model.

As previously mentioned, the single-particle quantum wave behavior, which is 
compatible with and can be described as fluidlike behavior, had been pointed out by
Madelung in 1927. In his pioneering paper of 1951, Penrose derived the equation for
the off-diagonal density matrix of the many-body helium fluid and then drew on
Madelung’s analysis of the single-particle wave function to associate the long-range
part of that off-diagonal density matrix with the superfluid component of the two-fluid
model. In essence, Penrose identified quantum wave coherence as the essential feature
responsible for both superfluidity and the BEC-like behavior conjectured by London. 

As the understanding grew that superfluidity was an outcome of quantum wave
coherence, the intimate connection between superfluidity and superconductivity was
realized. We now understand both phenomena to be caused by coherent quantum-wave
behavior, that is, many identical particles or units whose behavior can be described by
the same single-particle wave function. For a superfluid, the single unit that exhibits
the quantum wave behavior is a boson particle; for a superconductor, it is a pair of
fermions. Much as we regard a superfluid as a BEC of boson particles, we can regard a
superconductor as a BEC of fermion pairs. Not surprisingly, therefore, the fields of
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superfluidity and superconductivity share a number of phenomena that stem directly
from their coherent wave nature. Two of these coherent phenomena, Josephson junc-
tions and quantized vortices, have recently been studied in atom-trap BECs and are
briefly described next. 

Josephson Junctions. In the 1960s, the physics of superconducting Josephson junc-
tions provided evidence for the coherent wave nature of superconductors. The Josephson
junction is a weak link, such as a thin insulator, connecting two indistinguishable super-
fluids or superconductors—see Figures 2(a) and 2(b). One manifestation of the
Josephson “effect” is an alternating current flowing through the weak link when both
sides of the junction are kept at different chemical potentials by, for instance, the intro-
duction of a potential difference over the junction. 

In an ordinary electronic circuit, the potential difference sets up a direct current (dc),
which flows from the region of high chemical potential to that of low chemical poten-
tial. In contrast, in a coherent-wave superfluid system, the rate for bosons or fermion
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Figure 2. Josephson
Junctions and the
Josephson Effect for
BECs
The diagrams show (a) two
superconductors separated by
a thin barrier and (b) the over-
lap of the coherent single-
particle wave functions that
describe each superconductor
in the neighborhood of the
junction. In 1962, Brian
Josephson showed that, under
certain conditions, quantum
mechanical tunneling of elec-
tron pairs could occur through
the barrier. If the two wave
functions differ by a phase, a
direct current of electron pairs
will flow through the barrier, or
junction. If a voltage is placed
across the junction, the phase
difference varies periodically in
time, causing an alternating
current to flow across the junc-
tion. (c) A neutral-atom BEC
trapped in a double-well poten-
tial behaves like a supercon-
ducting Josephson junction.
The potential barrier created by
a laser beam acts like the insu-
lating barrier between the
superconductors. (d) The BEC
junction is predicted to exhibit
the Josephson effect. For
instance, a sudden change in
the chemical potential of one of
the BECs would initiate an
oscillation in the number of
particles in each well. The fre-
quency of the oscillation is
determined by the difference of
the chemical potentials.
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pairs to tunnel through the potential barrier of the junction depends sinusoidally on the
phase difference between the single-particle-like wave function on either side of the
junction. That phase difference increases linearly with time in the presence of a poten-
tial difference, giving an alternating current that oscillates at the frequency correspon-
ding to the chemical potential difference. 

In the original condensed-matter Josephson junctions, the superfluids were supercon-
ductors. In such cases, the bosons tunneling through the junction are electron pairs, and
the current is a charge current, which is easily and accurately measured. In helium
superfluids, on the other hand, the weak link is difficult to make, and the observation of
a weak neutral current presents a nontrivial experimental challenge, which was only
recently met (Packard 1998). 

The direct analogue of the Josephson junction in atom traps is an atomic BEC
trapped in a double-well potential—see Figures 2(c) and 2(d). The challenge of observ-
ing the Josephson effect in this system, however, is similar to the problem encountered
in observing Josephson oscillations in helium superfluids: How can one measure small-
amplitude oscillations of neutral-particle populations? In the last section, we show how
atom-trap BEC technology made possible a unique solution to the problem of observing
Josephson phase dynamics. 

Quantized Vortices. Quantized vortices are another coherent wave phenomenon
unique to superfluids and superconductors. In classical fluids, vortices are long-lived
flow patterns in which the particles whirl around an axis, all with the same angular
momentum. In a superfluid, a superflow that similarly whirls around an axis can be set
up by a characteristic variation of the coherent wave function: the phase of the wave
function varies cylindrically around the vortex axis. For the wave function to be single-
valued, it must return to its initial value after a full rotation around the axis; that is, its
phase must have changed by 2π or by 2πn, where n represents an integer number. This
constraint implies that the angular momentum of superfluid vortices is quantized with
allowed values equal to nh—see Figure 3(a). 

Quantized vortices in helium were observed by William Vinen and by George Rayfield
and Frederick Reif, and their observations provided further support for the coherent wave
behavior of the helium superfluid. In atom-trap BECs, the long-lived metastable vortex
structures were created and studied in laboratories at the Joint Institute for Laboratory
Astrophysics (JILA) at Boulder, Colorado, in the groups of Wieman and Cornell; at the
École Normale Supérieure in Paris, in the group of Jean Dalibard; at MIT in the group of
Ketterle; and at Oxford University, England, in the group of Chris Foot—see Figure 3(b).
A direct measurement of the angular momentum of the vortices, by Dalibard’s group,
experimentally confirmed the quantization of BEC vortices. In addition, at MIT, rapid
advances in BEC technology led to the creation of vortex lattices (also called Abrikosov
lattices) in atom-trap BECs with up to 160 vortices and to the detailed observation at both
MIT and JILA of the intricate dynamics of vortex formation and decay. 

BEC Interference—A Demonstration of Wave Coherence

In optical systems, long-range phase coherence is easily demonstrated through the
double-slit experiment. In fact, the sharpness of the interference fringes produced in that
experiment is used as the standard measure of optical coherence. In contrast, condensed-
matter systems give mostly indirect signatures of wave coherence—quantized vortices
and Josephson effects—although observations and applications of temporal interference
in superconductors do exist (for example, in superconducting quantum interference
devices, or SQUIDS). 
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Thus, when Ketterle’s group at MIT observed the spectacular interference pattern
shown in the opening illustration, they brought an unusual message: BECs are superflu-
ids that can manifest their long-range phase coherence in an optical-laser-like manner of
spatial interference. Michael Andrews and collaborators later (1997) argued that the
interfering BEC experiment demonstrated the first atom laser (albeit in a form that, as of
yet, is not necessarily useful to applications). Their demonstration suggests that the
simultaneous appearance of superfluid and laserlike aspects of long-range phase coher-
ence might one day yield particularly potent applications of BECs. 

The MIT Experiment. Figure 4 outlines the experimental procedure used by the
MIT group. First, an off-resonant laser beam is passed through the center of an atom
trap, which effectively creates a double-well potential. The atoms are then cooled and
Bose-condensed into two BECs, one on either side of the potential barrier—see
Figure 5(a). Because the height of the barrier significantly exceeds the chemical poten-
tial of either BEC, the two BECs are independent. 

When the trapping potential was switched off, the two BECs expanded freely and
started overlapping spatially. Using two laser pulses in succession, the MIT group
imaged the local density of atoms in a 100-micrometer-thick slice within the region of
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Figure 3. Quantized
Vortices
(a) In a superfluid, the phase of
the wave function for a vortex
must increase by 2π on each
revolution, which implies that
the angular momentum of the
vortex must be an integer multi-
ple of hh, or nhh. (b) Several exper-
imental groups have created
and imaged quantized vortices
in atom traps. The transverse
absorption images (Madison et
al. 2000) are of a condensate of
about 105 rubidium-87 atoms at
a temperature below 80 nK. This
condensate has been stirred
with a laser beam at various
rotational frequencies. Above a
critical rotational frequency,
vortex filaments appear. Plots 1
and 2 show the variation in opti-
cal thickness along the horizon-
tal axes of the clouds imaged in
plots 3 and 4, respectively.
The cloud stirred at 145 Hz
(shown in plot 3) contains no
vortex filament, whereas the
cloud stirred at 152 Hz (shown
in plot 4) contains one vortex 
filament. In plots 5, 6, and 7,
the condensate was stirred at
rotational frequencies of 169,
163, and 168 Hz, respectively.
(Reproduced with permission from 

The American Physical Society.)
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overlap. The first laser pulse pumped the BEC atoms in the selected slice from state |1〉
to a different hyperfine state |2〉. The second laser, tuned near a resonant transition from
state |2〉 to state |3〉 and pointing more or less perpendicular to the plane of the slice,
imaged the density of atoms in state |2〉. The image showed a highly visible, regular pat-
tern of clearly separated interference fringes of macroscopic size (40 micrometers)—see
Figure 5(b). The visibility of the fringes (defined in the box “The Double-Slit
Experiment”) ranged from 20 to 40 percent. By characterizing their optics, the experi-
mentalists inferred that the actual visibility of the density fringes ranged from 50 to
100 percent. The density fringes are defined as (ρmax – ρmin)/(ρ max + ρmin), where ρmax
and ρmin denote the maximum and minimum densities if observed with an ideal imaging
technique. The high visibility of the observed fringes indicates that the entire many-
body system behaves as a coherent wave. 

What Produces the Interference Fringes? Unquestionably (by definition, in fact),
macroscopic interference fringes indicate coherence in the usual optical sense. But how
the observed interference fringes relate to the coherence of the expanding BECs is a
matter of considerable subtlety, as will be explained. Under the experimental conditions
of independent BECs, the single-particle density matrix, as we show below, does not
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Figure 4. Procedure for
Creating BEC Interference 
In the BEC interference experi-
ment conducted at MIT
(Andrews et al. 1997), sodium
atoms were contained in a
cigar-shaped trap (stage 1).
In the second stage, a laser
beam focused on the center of
the initial trap repelled the
atoms from that region, creating
an overall atomic potential that
has a double-well shape. In the
third stage, the atoms were
cooled below the critical tem-
perature TC of the BEC phase
transition. The height of the
potential barrier separating 
the wells greatly exceeded the
thermal energy kBTC (where kB
denotes the Boltzmann con-
stant) and the chemical poten-
tials of the BECs that are
formed in the left (L) and right
(R) wells. (The wave functions
for the two BECs are labeled χL
and χR.) Under these condi-
tions, the two BECs are inde-
pendent of each other in the
sense that they cannot “know”
each other’s phase. When the
trapping potential is suddenly
removed in stage 4, both BECs
expand and then overlap.
Images of the atomic density of
the overlapping BECs show
macroscopic interference
fringes of high visibility.

Stage 1:  Sodium atoms are contained in a single-well trapping potential.

Stage 2:  A laser beam repels the atoms and creates a trapping potential with a double-well shape.

Stage 3:  The atoms are cooled below the critical temperature of the phase transition to BECs.

Stage 4:  The trapping potential is suddenly removed, and the BECs expand and overlap.

R

R



exhibit interference. Why then does the recorded image show fringes? The resolution, as
we show for a special case, depends on the fact that the image does not record the sin-
gle-particle density. 

The Case of BECs with Definite Particle Number. As reported by Andrews et al.
(1997), the potential barrier separating the two BECs was five times higher than the
energy corresponding to the critical temperature for the BEC phase transition and 
50 times higher than the chemical potentials of the BECs in each well. Under those con-
ditions, the state of the double-well BEC system is indistinguishable from that of two
BECs that were condensed in separate traps at an infinite distance from each other and
then brought together. In principle, we can therefore know exactly how many particles
occupy each of the two BECs. That is, the system is in a number state. The single-parti-
cle density of this double-well number state ρ1(N) does not exhibit interference, a point
we now demonstrate for a simplified double-well number state with only two particles. 

We call the single-atom state centered in the right well χR(r) and the single-atom
state centered in the left well χL(r), where r denotes the center-of-mass position of the
trapped atom. Thus, a two-particle number state with one atom in each well is represent-
ed by a wave function Ψ(N):
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Figure 5. Sodium Atom
BECs and Their Interference 
(a) Phase contrast images of a
single Bose condensate (upper
panel) and double Bose conden-
sates were taken in the magnetic
trap of the MIT group. An argon
ion laser that was focused into
the center of the trap created a
double-well potential. Changes
from 7 to 43 mW in the power of
the laser-light sheet caused the
distance between the two con-
densates to vary. (b) The interfer-
ence pattern of two expanding
condensates was observed after
a 40-ms time of flight for two 
different powers of the argon-
laser-light sheet (raw-data
images). The periods of the
fringes were 20 and 15 µm;
the laser powers were 3 and 
5 mW; and the maximum absorp-
tions were 90% and 50%,
respectively, for the left and right
images. The fields of view were
1.1 mm horizontally by 0.5 mm
vertically. The horizontal widths
were compressed fourfold, a con-
dition that enhances the effect 
of the fringe curvature. For the
determination of the fringe 
spacing, the dark central fringe
on the left was excluded.
(Reprinted with permission from Andrews et

al. Science 275, pages 638 and 639.

Copyright 1997 American Association for the

Advancement of Science.) 



(5)

When the external potential is switched off, the two-particle wave function, to a close
approximation, remains of the form in Equation (5), with χL and χR evolving as freely
expanding single-particle wave functions that are mutually orthogonal. The correspon-
ding single-particle density ρ1(N) at a given time t,

(6)

is equal to an incoherent average of the densities of the individual expanding single-
particle wave functions. Generally, the single-particle densities expand smoothly—a
free-particle Gaussian wave function (for instance, if the χ-wave-functions start out as
ground-state functions of harmonic oscillator potentials) remains Gaussian—so that
ρ1(N) (r; t) does not exhibit spatial oscillations. 

The Case of a Mutually Coherent State of the Double-Well System. In contrast,
had a single-well system containing both particles in its center-of-mass ground state
been split adiabatically, the resulting double-well system would be in a mutually coher-
ent state. This particular mutually coherent state would be a product of single-particle
wave functions of the type 2–1/2[χL (r; t) + exp(iα) χR (r; t)], where α denotes the phase

difference that evolved between the right and left wave functions during the adiabatic
splitting of the wells. This two-particle, mutually coherent wave function takes the form 
where the label C stands for coherent. The mean field or classical description—see
Equation (1)—of the double-well BEC assumes such mutual coherence. The single-
particle density of the mutually coherent, freely expanding two-particle system reads

where c.c. is the complex conjugate of the previous term. Far from the potential minima
of the initial wells, the amplitudes of the expanding wave functions vary slowly in
space, so that we can approximate those amplitudes as χR(r; t) ≈ χ exp[iθR(r; t)] and
χL(r; t) ≈ χ exp[iθL (r; t)], and the single-particle density in the far region becomes

(9)

Thus, in addition to the densities of the expanding single-particle wave functions,
ρ1(C)(r;t) also contains an α-dependent term—namely, the interference fringes—that
varies sinusoidally with the difference of the position-dependent phases of the overlap-
ping χR and χL functions. The expression in Equation (8) is quite general; the single-
particle density of an N-particle BEC distributed over two wells in a mutually coherent
state takes on the form of Equation (9) in the far region.
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Heuristic Derivation of the Interference Fringe Pattern. What is the geometry and
spacing of the interference fringes that would be produced by this mutually coherent state?
We offer a heuristic derivation of the phase of a freely expanding single-particle state.
Classically, a particle that has traveled a distance r in a time t has a velocity v = r/t. In the
spirit of the Madelung description, we associate the gradient of the phase θ with mv/h, and
we find dθ/dr = (mr/ht), so that θ = (m/2h)(r2/t) + C, where C denotes a constant, inde-
pendent of r. Now we suppose that the left and right BECs are sufficiently alike so that we
can assume that their phases in the expansion evolve with the same constant C. In that
case, the difference between the phases of the amplitudes χR and χL evaluated at a vector
distance r from the center of the right well and rL from the center of the left well is 

θR – θL = (m/2ht)[r2 – r2
L ]2 = – (m/2ht)[2d ⋅ r + d2]  , (10)

where the vector distance d separates the centers of the potential wells and r2 – r2
L = 

–2r ⋅ d – d2 (see Figure 6). The high-density regions of the interference fringes are
planes perpendicular to d at a regular spacing of λ = ht/(md). The measured density pat-
tern for the density in Equation (9) is

(11)

and the value of α can be inferred from the positions of the interference fringe planes. 
A more careful derivation of the phases θR(L) gives corrections, but the above expres-

sions are essentially correct in the regions imaged in the interfering BEC experiment.
The experimental images do indeed reveal planar interference fringes, separated by a
distance λ = ht/(md).

Resolving the Origin of the Interference. The experiment clearly indicated coher-
ence, and the image agrees with the single-particle density of the mutually coherent
double-well system. However, the experimental system was prepared not in a mutually
coherent state, but in a number state analogous to that described by Equation (5). In that
state, given that the single-particle density ρ1(N) in Equation (6) does not exhibit inter-
ference, why does the recorded image show fringes like those from the coherent single-
particle density in Equation (11). The resolution of this apparent puzzle lies in the fact
that the image does not record the single-particle density. Instead, the experiment probes
the multiparticle density. Specifically, we cannot interpret the image of the N-particle
system as N independent measurements of the single-particle density. But we can
assume that the measurement captures the N-body system in a “likely” configuration;
that is, the observation of a particle at r1, another at r2, and so on, indicates that the state
of the system corresponding to the N-particle density ρN(r1, r2, …, rN) = |Ψ (r1, r2, …,
rN)|2 has a relatively high probability. 

We use the special case of two particles in a double-well potential to illustrate the dif-
ference in probing the N-particle rather than the single-particle density. We assume the
two-particle double-well system is prepared in the number state of Equation (5). We
detect the particles at a time t during a  period that is short on the time scale on which the
single-particle wave functions χL and χR expand. The probability that one particle is
recorded at r1 and the other at r2 is proportional to the two-particle number-state density:

ρ χ α1
2  21  2C cos( ) ( ) = + ( ) ⋅( ) + ( ) −[  ]{  }r  r d;  ,t m t m t dh h
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Figure 6. Geometry of
Interference Fringes
The diagram shows the interfer-
ence fringes in the image of two
expanding BECs that were 
initially trapped in the right (R)
and left wells (L) of a double-well
potential. As defined in the text,
the r-vector denotes the position
relative to the center of the right
well, and the d-vector denotes
the relative position of the cen-
ters of both wells. The high-
density regions of the interfer-
ence fringes are planes oriented
perpendicular to d. At a time t
after releasing the BECs,
the interference fringe planes 
are separated by a distance 
λ = ht /(md ). The actual positions
of the fringes depend on the
phase difference α of the initial
BECs (if the BECs are phase
coherent, χ = χL + eiαχR).

L R
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rL = r + d r
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Initial state:  + ei 
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Assuming that r1 and r2 are located in the region where |χL(r1; t)| ~ |χL(r2; t)| = χ,
the two-particle density defined in Equation (12) takes on the form

which contains the typical oscillatory contribution seen in Equation (9) describing an inter-
ference pattern. Thus, although the system is in a number state and the single-particle den-
sity does not exhibit interference, the two-particle density ρ2(N) does show interference. 

The sinusoidal contributions in Equation (13) arise from the interference of the two
distinct two-particle events illustrated in Figure 7. In one event, the particle detected at r1
was initially in the right well, whereas the particle detected at r2 originated from the left
well. In the second event, the situation is reversed: The particle detected at r1 originated
from the left well, whereas the particle detected at r2 originated from the right well.

ρ χ θ θ θ θ2
4 1N t  t t t t( ) ( ) ≈ + ( ) − ( ) −[{ ( ) − ( )( )]}r r r r r r1 2 1 1 2 2, ; cos ; ; ; ;  ,R L R L
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Figure 7. Origin of the Two-
Particle Interference in
Equation (13) 
This schematic illustrates the ori-
gin of the interference pattern in
the two-particle density for an
expanding two-particle system
that originates in a number state
of a double-well potential. (a) The
origin of the coordinate system is
the center of the right potential
well. (b) In event 1, the particle
detected at r1 originates from the
right well; the particle detected at
r2, from the left well. (c) In event
2, the particle detected at r1 origi-
nates from the left well, whereas
the particle detected at r2 origi-
nates from the right well.
Because the two-particle wave
function consists of a superposi-
tion of terms that correspond to
the classical trajectories shown
in (b) and (c), these events can
interfere.

(13)



Using Equation (10) for the phase difference between the two single-particle wave
functions at a position r, θR(r) – θL(r) ≈ – (m/2ht)[2d ⋅ r + d2], we find that the two-
particle distribution depends only on the relative position r1 – r2,

(14)

Whereas the likelihood of detecting the first particle at position r1 is independent of
r1 in the far region ρ1(N) ≈ χ2, the likelihood of detecting a second particle at r2 is
greater near the planar regions d ⋅ (r1 – r2) = n(ht/m), where n denotes an integer.
Note that the planar regions of maximal ρ2(N)-values resemble the interference fringes
of ρ1(C) in Equation (11), namely, the single-particle density of the expanding, mutual-
ly coherent two-particle double-well system. In fact, the fringe patterns for the two-par-
ticle density will be identical to those of an equivalent mutually coherent system, pro-
vided the relative phase α is chosen so that the fringes of that equivalent system over-
lap the position where the first particle was detected. Because the position of the first
particle is undetermined until measured, we can say that it is the act of determining 
the first particle’s position that fixes the value of the relative phase of an equivalent 
mutually coherent system. The two-particle number-state probability distribution then
resembles the product of one-particle probability distributions of the equivalent mutually
coherent system. That equivalence is a general feature: The more particles detected in
the image of an expanding number-state double-well BEC, the more the outcome of
such measurement resembles that performed on a mutually coherent double-well BEC.
The relative phase of the equivalent mutually coherent BEC system can be extracted
from the image but cannot be determined beforehand. 

The equivalence to a mutually coherent state with a value of the phase difference
that is established by the act of measurement is familiar from the observation of inter-
ference of independent lasers (Pfleeger and Mandel 1967) and of the dc Josephson
effect (Anderson 1986). 

Relative Phase Dynamics for Two N-Particle BECs. Our derivation of the num-
ber-state two-particle density and its equivalence to a mutually coherent state density
of undetermined relative phase is not easily generalized to a number-state double-
well system with larger particle numbers. Instead, we can apply the elegant descrip-
tion developed for the relative phase dynamics of Josephson junctions. In this
description, the dynamics between the two weakly linked superfluids is cast in terms
of only two variables: α, the relative phase, and m, half the difference of the number
of particles contained in each well. In fact, m and α are quantum numbers, and the
number states are the eigenstates of m. We denote by |m〉 the number state of a dou-
ble-well system with N-particles per well, of which N – m occupy the left well and 
N + m, the right well. 

An alternative set of basis functions is provided by states of good relative phase |α〉
= N–1/2∑m exp(iαm)|m〉. The transformation from the |m〉-basis to an |α〉-state represen-
tation is therefore a Fourier transform, somewhat analogous to the transformation
between the traditional momentum and coordinate representations. Just as coordinates
and momenta are conjugate to each other, m and α are conjugate variables. The many-
body state can be expanded in either the |α〉-states or the |m〉-states, |Ψ〉 = ∫dαΨ(α)|α〉 =
∑mΨm|m〉, where Ψ(α) and Ψm are equivalent to the coordinate (x) and momentum (p)
representations of a single-particle state. Generally, the Ψ wave function implies a
spread both in the m and α variables: ∆m = (〈(m – 〈m〉)2〉)1/2, ∆α = (〈(α – 〈α〉)2〉)1/2,
where 〈 〉 denotes the expectation value. As conjugate variables, ∆m and ∆α satisfy the

ρ χN t m t, , ;  .2
4 1r r d r r1 2 1 2( ) ≈ + ( ) ⋅ −( )[ ]{  }cos h
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Heisenberg uncertainty relation ∆m × ∆α ≥ 1, whereas ∆x and ∆p satisfy the relation
∆x × ∆p ≥ h in single-particle quantum mechanics. 

To continue our comparison of BEC interference experiments with single-particle
quantum mechanics, we note that the establishment of a relative phase between inter-
fering BECs is the analogue of a position measurement on a particle in a plane-wave
state. When the plane wave has a well-defined momentum, then ∆p = 0 and ∆x → ∞.
The latter expression means that the coordinate has maximum uncertainty, and there-
fore, a measurement of x could yield any value. Likewise, in the initial state of the
interfering BEC experiment, ∆m = 0, and the determination of α achieved by the imag-
ing of the expanding BECs could yield any value. When the measurement is per-
formed, however, the wave function collapses to an eigenstate of α. 

Squeezing the Numbers in BECs—Macroscopic Quantum
Fluctuations

As mentioned previously, the number-phase description in terms of the α or m quan-
tum eigenvalues is familiar from the treatment of Josephson junctions. The application
of the number-phase description to the problem of double-well BECs then reveals an
intimate connection between the physics of BEC interference and Josephson physics.
However, the BEC interference experiment conducted at MIT lacks the weak link
through which the superfluids can exchange their boson particles. Consequently, it is 
not exactly a BEC-Josephson experiment. In a subsequent effort, the Kasevitch group 
at Yale used a related setup and succeeded in inducing and controlling such reversible
superflow between multiple BECs. The Yale experimentalists achieved this goal by 
trapping the BECs in the potential minima of an optical lattice—a trapping potential 
that oscillates sinusoidally in space as E02 sin2(kx)—and by lowering and raising 
the potential barriers separating the BECs through variations of |E0|2 . Most important,
the Yale group probed Josephson physics by observing variations in the interference 
pattern of the expanding BECs after switching off the optical-lattice potential. 
The sharpness of the interference fringes revealed the uncertainty in relative phase,
∆α, of the expanding BECs. In particular, when the barrier height had been sufficiently
increased before the BECs were released, the fringes observed in the image of the
expanding BECs became fuzzy, an indication that the uncertainty in the phase values 
of the initial BECs had increased markedly. This increase is expected as the number
uncertainty decreases. As we argue below, this is a genuine quantum fluctuation effect
observed in a macroscopic system. To set the stage, we start by elucidating the role of
the quantum fluctuations in multiple-well BEC physics. 

Quantum and Classical Physics of Double-Well BECs. As in Equation (1), the
classical or mean-field description of the N-particle double-well system, the many-body
wave function is a product state: Ψ(r1, r2, …, rN;t) ≈ χ(r1;t)..., χ(rN;t), where each 
single-particle wave function is a linear superposition of left-well (χL) and right-well
(χR) wave functions,

χ(r;t) = 1/(2N)1/2[(N – m(t))1/2χL + eiα(N + m(t))1/2χR]  , (15)

and α and m are well-defined parameters. We use the same notation as in the number-
phase description because the physical interpretation of α and m is the same as that of
the quantum eigenvalues introduced above. In fact, α(t) and m(t) in Equation (15) are
the expectation values of the quantum treatment of the number-phase dynamics. The
classical treatment can then describe superfluid effects, the essence of which relies on
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the existence of a well-defined phase—see Equations (1) to (4) and the section “The
Coherent Wave Nature of Superfluidity”—but it cannot account for behavior such as the
collapse to a random value of the relative phase in the imaging of interfering BECs.
More generally, contrary to predictions of classical mechanics, the quantum treatment
predicts different outcomes of identical measurements on identically prepared systems.
Measures of such quantum randomness are the standard deviations, such as the devia-
tions ∆α and ∆m introduced earlier, that quantify the range of quantum fluctuations. For
sufficiently large numbers of atoms, ∆m can take on values that are large enough for the
fluctuation range to be called “macroscopic.”

Weakly Linked BECs. When the barrier separating the two potential wells in the
double-well BEC is lowered to an appropriate value, atoms can penetrate the barrier,
which thereby provides the weak link that allows the left and right BECs to exchange
particles. As in the description of BEC interference, we define a phase for each BEC
and describe the possible particle exchange in terms of the canonically conjugate vari-
ables that represent the difference of the condensate phases, α, and half the difference of
the particle population, m, occupying the individual BECs. The inter-BEC particle
exchange gives rise to an effective tunneling energy of the usual Josephson form,

(16)

We expect the value of EJ to be roughly proportional to the number of particles (N)
per well, to depend weakly on the number difference m, and to be extremely sensitive to
the height of the potential barrier separating the BECs. As the barrier height increases,
the tunneling of particles is restricted, a limitation corresponding to a decrease in the
value of the EJ -parameter in Equation (16). In what follows, we write 
EJ = 2NJ, where J denotes the tunneling energy per particle. The tunneling energy, mini-
mized by putting α = 0, favors a well-defined value of the phase difference in the
ground state and, hence, favors the establishment of a definite phase difference (the
superfluid limit). In contrast, the usual interparticle interactions, if repulsive, favor a
well-defined value of m. To see that, we note that the interparticle interaction energy
scales as the number of interactions. The NL-particles (in the left BEC) experience
NL(NL – 1)/2 ≈ NL

2/2 interactions. Similarly, the NR-particles (contained in the right
well) undergo NR

2/2 interactions. Assuming that the interaction energy per particle, U, is
approximately the same in each well and using NL = N – m and NR = N + m, we write
the total interaction energy as

E EJtun cos= − ( )α  .

156 Los Alamos Science Number 27  2002

Atom-Trap BECs

Figure 8. The Bose-
Hubbard Model
The diagram shows an optical-
lattice potential occupied by
atoms of integer spin. The
interactions between the atoms
include a hopping or tunneling
interaction and a repulsive
interaction between atoms at
the same site.

U

V0 sin2(kx)

J

HB-H = Um2 – 2JNcosα
      J = Tunneling energy per particle

     U = On-site interaction energy per particle



.                                                       (17)

In contrast to the tunneling energy, Eint takes on its minimum value at m = 0, corre-
sponding to the BEC number state with NR = NL = N. The contribution to the energy
that stems from the phase-number dynamics (the sum of interaction and tunneling ener-
gies after the constant UN2-term has been discarded) is then equal to

(18)

Classically, the position of lowest energy is m = 0, α = 0. Quantum mechanically, it fol-
lows from Heisenberg’s uncertainty principle that m and α, being conjugate variables,
cannot be determined simultaneously to absolute certainty. We now use the double-well
Bose-Hubbard Hamiltonian in Equation (18) as a starting point to indicate how weakly
linked BECs can be regarded as a laboratory for exploring both the classical dynamics
and the quantum nature of Josephson junctions. A schematic representation of the indi-
vidual terms that contribute to this Hamiltonian is shown in Figure 8.

Probing Josephson Physics in Weakly Linked BECs. The Bose-Hubbard
Hamiltonian in Equation (18) is the generic form of the Hamiltonian that governs the
physics of Josephson junctions. We can expect, therefore, that the atom trap becomes a
new laboratory for studying Josephson effects. Although this physics has been studied
intensely in condensed-matter environments, the new parameter range and technology 
of the BEC traps give a new twist to the study of Josephson-junction physics and other
known phenomena, as well as the opportunity to study quantum fluctuations and,
perhaps, to discover novel applications. 

A sudden change in the depth of one of the wells or in its particle number can
“nudge” the many-body system out of equilibrium, initiating a collective excitation in
which the expectation value of the well populations oscillates. This phenomenon is
called Josephson oscillations. On the topic of probing quantum behavior, it is interesting
that the parameters in Equation (18) can be controlled experimentally: Variations in the
trapping potential can alter the values of U and J. Clearly, the atom-trap technology
gives unusual control over the Josephson junction, providing new knobs that can both
initiate Josephson oscillations and vary the quantum fluctuations. The crucial question
of whether oscillations and fluctuations can be measured in cold-atom BECs was
answered, in part, by the Yale experiment. 

What are the obstacles that the BEC technology faced in probing Josephson physics?
In superconductors, Josephson effects are routinely studied by measurements of the
weak supercurrent. Such measurement of a charged particle can be achieved relatively
simply and accurately. In systems of neutral particles, on the other hand, the observation
of a weak current represents a much greater challenge, and in helium fluids, a Josephson
current was only recently observed (Packard 1998). By the same token, in the neutral-
atom traps, current atom-counting techniques are not sufficiently accurate to allow
observing small-amplitude population oscillations. Numbers of atoms in a typical BEC
are measured with a relative accuracy of only about 10 percent. This low accuracy 
renders the technique unsuitable for observing Josephson oscillations of atomic-trap
populations in the linear regime (number oscillations with a magnitude of 1 percent or
less of the total number of trapped atoms). Instead of measuring a population imbalance,

H Um JN= − ( )2 2 cos  .α

E U N N U N mint R L= +[ ] ≈ +[ ]( / )  .  2 2 2 2 2
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we might try to observe the relative
phase of BECs, which gives a com-
plementary view of the physics; for
instance, the expectation value of
the relative phase oscillates at the
same frequency as the population
imbalance or current in the
Josephson oscillation. The BEC
interference experiment conducted
at MIT illustrated that the relative
phase can be measured from
recorded images of expanding
BECs. This measurement, however,
is destructive and yields a value for
the phase at a single time. Whether
this technique could be used to
probe the time evolution of the
phase is not evident. In addition,
the imaging of BEC interference in
the double-well system gives only a
single value of the phase, whereas a
measurement of the range of quan-
tum fluctuations requires a record
of the phase distribution. 

The Yale experiment resolved the problem of probing the phase distribution by
imaging the interference of many simultaneously expanding BECs, which had been
weakly linked before the trapping potential was released. The resulting image is sensi-
tive to the distribution of the complex phase values of the BECs. If the phases of the
BECs are strongly correlated—they all have approximately the same value, for
instance—then the interference of each pair of BECs can add up in phase and give an
overall pattern with bright and sharp fringes. In contrast, if the phases of the weakly
linked BECs are randomly distributed, then their values, determined by the act of
imaging, differ widely. As a consequence, the fringes corresponding to the interfer-
ence of different pairs of BECs do not overlap, so that interference washes out. The
Yale experiment imaged the density of 12 expanding BECs that had been initially
trapped in the adjacent potential wells of a linear optical lattice and weakly linked
before the optical-lattice potential was released (see Figure 9). In such an optical lat-
tice, the centers of mass of adjacent BECs are all separated by the same distance (half
the wavelength of the light that creates the standing wave pattern of the lattice poten-
tial). By measuring the amplitude and fringe sharpness (defined as the ratio of spatial
width to the distance separating the fringes) observed in imaging the expanding BECs,
the Yale group quantified the uncertainty of the relative phase values. 

As they had ramped up the height of the potential barriers before releasing the
BECs, the Yale group observed a marked decrease in the sharpness of the fringes in
the expanding-BEC images. The measured sharpness was in quantitative agreement
with numerical simulations that were based on the ground-state phase uncertainty. The
assumption that the many-body system has reached its ground state before the trap-
ping potentials are switched off is reasonable because the change in potential barrier
was effected adiabatically in the experiments. In a ground state, the uncertainties of
conjugate variables generally reach the Heisenberg limit, which in this case would
mean that ∆m × ∆α ≈ 1. Thus, from their measurements and the agreement with the
predicted values of phase uncertainty, the Yale group inferred that their observed
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Figure 9. Formation of
Number-Squeezed States
in an Atom-Trap BEC
The sequence of absorption
images, (a)–(c), and the associ-
ated density cross sections,
(a′)–(c′), show atoms released
from optical lattices of increas-
ing depth: U0 = 7.2Erecoil,
U0 = 18Erecoil, and U0 =
44Erecoil, respectively. In (a),
the two-peaked structure is 
due to interference between
atoms released from different
lattice sites. As the well depth
increases and the tunneling
rate decreases, the interference
pattern becomes progressively
blurred, reflecting greater
phase uncertainty and the 
formation of number-squeezed
states.
(Reprinted with permission from Orzel et

al. Science 291, page 2389. Copyright 2001

American Association for the

Advancement of Science.)



increase in phase uncertainty implied a similar decrease in number uncertainty ∆m.
By analogy with a similar reduction of uncertainty in optical field intensities, the
process of reducing ∆m << N1/2 is called “squeezing.” In Figure 10, we further illus-
trate the aptness of this term by sketching the effect of varying the parameters of the
Hamiltonian in Equation (18) on the Wigner distribution function. 

The experimental increase of the potential barrier height lowers the value of J,
which greatly reduces the tightness of the confinement in the α-direction of the 
(α, m)-phase space. In response, the Wigner distribution stretches out farther in 
the α-direction. Since the area of high probability shown in Figure 10 remains of
order 1, the uncertainty in the m-direction is tightly squeezed. Thus, as the hopping
motion of particles between adjacent wells is “frozen out,” each well contains a
better-defined number of particles. To further support their claim of having
observed quantum fluctuations, the Yale group also demonstrated that the trend of
decreased fringe sharpness may be turned around by reversal of the variation in
potential barrier height. 

Quantitative Treatment of Number Squeezing. We now revisit the description
of the double-well BEC to provide a quantitative understanding of the number
uncertainty squeezing illustrated in Figure 10. We introduce a dimensionless param-
eter, or coupling constant Γ, that characterizes the competing interactions in the sys-
tem: Γ = UN/2J is the ratio of the interparticle interaction energy per well (UN2/2)
to the tunneling energy per well NJ (the latter plays a role somewhat analogous to
that of kinetic energy in other systems). We minimize the Hamiltonian described by
Equation (18) in the α-representation. To convert Equation (18) from the number
representation to the α-representation, we replace the m-operator by –(1/i)∂/∂α.
Then, we calculate the expectation value of the Hamiltonian by using the Gaussian
state for the wave function ψ, ψ(α) ∝ exp(–α2/(4x). The expectation values are sim-
plified when expressed in terms of the width parameter x, which is related to the 
uncertainty in phase difference as ∆α = (2x)1/2: 〈m2〉 =  –〈∂2/∂α2〉 = 1/(2x) and
〈cos(α)〉 = exp(–x). 
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Figure 10. Number
Squeezing in Phase Space 
This graph illustrates the
physics of number squeezing
by showing the effect of an
increase in the potential barrier
on the number phase (m,α)
Wigner distribution of the dou-
ble-well BEC discussed in the
text. The graphs show the area
in which the Wigner distribu-
tion of the many-body ground
state exceeds a minimal value.
An increase in the potential
barrier lowers the tunneling
rate J , which reduces the
{tightness of confinement in
the α-direction of the (m,α)
phase space. The word 
“confinement” refers to the
potential energy-like term in
the energy expression of
Equation (18) that depends on
α. As a result of lowering J,
the ground-state Wigner distri-
bution stretches out in the 
α-direction. In accordance with
the Heisenberg uncertainty
principle (∆m∆α ≈ 1), the area
of high Wigner distribution
value remains constant in the
process of stretching and the
number uncertainty ∆m
decreases accordingly.
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The expectation value of the Hamiltonian is then equal to

(19)

and we obtain the value of the width parameter x by minimizing Equation (19):

.
(20)

In the weakly coupled regime Γ << 2N2, the minimum expectation value occurs at
a value x << 1, in which case exp(x/2) ≈ 1 and Equation (20) yields the width param-
eter x ≈ (Γ/2)1/2/N. In other words, the weakly coupled case yields a very small phase
uncertainty,

∆α = (2x)1/2 ≈ (2Γ )1/4/ N1/2 << 1  , (21)

and therefore corresponds to the superfluid limit. Most superconducting Josephson
junctions find themselves in this limit. Because the number uncertainty is small,
∆α ~ N–1/2, the classical (or mean-field) approximation successfully describes these
Josephson experiments. The uncertainty in particle number ∆m ≈ N1/2/2Γ1/4 appears
Poissonian (∆N ≈ N1/2) if we write it in terms of the coupling constant. The small
phase uncertainty in this regime is not easily measured with appreciable accuracy. 

In contrast, as the value of J is lowered by an increasing barrier height, the coupling
constant Γ = [UN/2J] increases accordingly, and the phase uncertainty can increase to
give a measurable decrease in fringe sharpness. In the Yale experiment, the increase in
the potential barrier was sufficient to allow the system to approach the strong coupling
regime Γ ~ N2 or U/J ~ N. In that regime, the value of x at the minimum energy can
become of order 1, in which case we cannot replace exp(x/2) by 1. Instead, we must
solve Equation (20). By the time the potential barrier has been increased to the point
that, say, U/J = (4/e)N, the variation becomes ∆m = (l/2)1/2, and the uncertainty in
atomic population of each well has dwindled to less than one particle. At that point,
∆m << N1/2, and we say that the number distribution has become sub-Poissonian. 
The phase-difference uncertainty, ∆α, also becomes of order unity. Well before that
point, say, when U/J is increased to only 10 percent of N, or U/J = 0.1N, the uncer-
tainty in phase difference in the double-well BEC has grown to half a radian. In the
multiple-well BEC system, the uncertainty in phase between nonadjacent wells under
that same condition, U/J = 0.1N, is greater, and the loss of fringe sharpness in the
interference of 12 BECs is quite noticeable. 

From Superfluid to Mott Insulator 

By illustrating number squeezing, the Yale group demonstrated that BEC technology
can engineer and observe quantum fluctuations of an almost macroscopic system. On
the other hand, technical constraints in the Yale experiment limited the height to which
the potential barrier could be raised and, hence, the range to which the number uncer-
tainty could be squeezed. These limitations prevented the Yale group from venturing 
further into the strong-coupling regime. By pushing this frontier, Hänsch’s group in
Munich were able to observe a very interesting phase transition (Figures 11 and 12). 
As they squeezed the number uncertainty below a value of order 1—it would be (1/2)1/2
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in the approximations introduced previously—the ground state abruptly changes to a
Fock or number state with ∆m = 0. This phenomenon is a true phase transition: Many-
body properties change suddenly as U/J ~ N. In addition to the change in number statis-
tics, the system’s conductivity alters discontinuously as the system takes on a number
state. In the number state, a finite amount of energy is required to transfer atoms between
wells; therefore, the transition to the number state abruptly alters the nature of the 
many-body system from a conductor with superfluid properties to a Mott insulator. This
many-body phenomenon is an example of a transition driven by the competition between
different interactions, rather than by the competition between order and disorder, which is
responsible for usual phase transitions. If they involve quantum fluctuations, the former
transitions (which occur at zero temperature) are called quantum phase transitions. 

If we can trust the tunneling energy in Equation (16) and the interaction energy in
Equation (17) to accurately describe the many-body physics, then the BEC in an optical
lattice is an example of a Bose-Hubbard system. The theory of the phase transition from
superfluid to Mott insulator in such systems has been explored in great detail.
Experimentally, this transition was first observed in an array of superconducting
Josephson junctions. In BEC physics, the experimental study of the transition by the
Munich group demonstrated, once again, that the BEC technology gives an unusual
degree of control. 
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Cigar-Shaped BEC Spherical  BEC (a)

(d) (e) (f)
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Cubic-Lattice Variation in Optical Potential Height
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Mirrors
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Vmax

Capturing Atoms in an Optical-Lattice Potential

Potential Interference Fringes

In the BEC experiment that demonstrated the quantum phase
transition from a superfluid to a Mott insulator (Greiner
2002), the experimentalists started with a cigar-shaped BEC
(a) that was relaxed to a spherical BEC (b), distributing the
atoms more evenly over a larger region of space. By shining
in three laser beams, detuned from each other and reflected
by mirrors, the researchers created a standing-wave pattern
that captures the atoms in an optical-lattice potential (c):
V (x, y, z) = V0[sin2(kx) + sin2(ky) + sin2(kz)], where k denotes
the wave vector of the laser light. Gradual increases in laser 

intensity and, hence, in the potential V0 trap one to three
atoms per potential minimum, or well. These minima form a
cubic lattice (d). In (e) we show a typical variation of the opti-
cal potential height V0: The potential height is ramped up
“slowly” for 80 ms and kept constant for another 20 ms; then
the trapping potential is suddenly switched off, at which
point the atoms in the BEC begin to expand. In (f), the atomic
wave functions from different wells begin to overlap, and the
atomic density imaged in a plane shows
interference fringes.

Figure 11. Demonstration of a Transition from a Superfluid to a Mott Insulator



Before describing the experiment, we demonstrate the transition in the double-well
BEC system. From Equation (19), we see that, in the limit of large phase uncertainty 
(x → ∞), the expectation value of the number-phase energy—Equation (18)—vanishes.
Consequently, when the local minimum of 〈H〉 takes on a positive value, the true 
minimum of the system is found at x → ∞, as we illustrate in Figure 13. As the value 
of U/JN increases, the value of the local minimum increases until, at U/J = (4/e)N,
corresponding to ∆α = 21/2 and ∆m = 2–1/2, the value of the minimum turns positive 
and the real minimum is at x → ∞, corresponding to ∆α → ∞ and ∆m = 0. 

A significant difference between the Yale and Munich experiments lies in the number
of potential wells created in the optical lattices. The trapping potential in Hänsch’s
group was a three-dimensional lattice of 65 sites in each dimension. The large number
of lattice sites in the Munich experiment, 653 in total, is significant because it allows
experimentalists to trap one to three particles per site while still having a sufficiently
large total number of atoms to image the interference of the expanding BECs. By lower-
ing the value of N (N was about 10,000 in the Yale experiment), the Munich group could
reach the critical ratio of U/J ~ N with a much smaller increase in barrier height.
Actually, the simple (α, m) treatment of the number-phase dynamics in the double-well
BEC becomes invalid for small values of N and a different description, such as the one
presented by Subir Sachdev (1999), is necessary. Nevertheless, the (α, m) description
still captures the main features and predicts the correct order of magnitude of the transi-
tion point. Hänsch’s group also probed the excitations of this system and found evidence
for the insulator property of a finite energy (or “gap”) necessary to allow transferring
atoms between wells. Again, these experiments illustrate the unprecedented tools offered
by the cold-atom technology. 

Los Alamos Achievements and Future Work

With regard to fundamental physics, we have shown that BEC experiments can
probe beyond the confines of traditional condensed-matter Josephson-junction studies
by exploring and engineering quantum fluctuations. We have also emphasized that
atom-laser systems with superfluid properties (long-range phase coherence in an equi-
librium as opposed to a nonequilibrium state) may offer unique opportunities for
application. For instance, the BECs may find novel uses in atom interferometry and
sensing applications.

162 Los Alamos Science Number 27  2002

Atom-Trap BECs

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12. Absorption
Images Showing a
Transition to a Mott
Insulator in a BEC
The BEC absorption images
(a)–(h) were recorded in a 
particular plane 15 ms after 
the trapping potential was
switched off. The images
reflect different maximum 
values Vmax of V0. In units of
the recoil energy, Erecoil =
hh2k2/2m (capital R was used
for “right”), Vmax took on 
the values (a) 0, (b) 3Erecoil,
(c) 7Erecoil, (d) 10Erecoil ,
(e) 13Erecoil, (f) 14Erecoil,
(g) 16Erecoil, and (h) 20Erecoil.
Notice that the interference
pattern completely disappears
between V0 = 14Erecoil and V0
= 16Erecoil, in agreement with
the prediction that all phase
information would be lost as
the potential barriers increase
and the atoms become 
localized in their respective
potential wells.
(This figure was reproduced courtesy of

Nature.)



Hopefully, this historical perspective has also conveyed a sense of the flexibility of
the cold-atom-trap technology. That flexibility has led to a host of other avenues being
pursued or contemplated: for instance, schemes to alter and control the nature and
strength of the interparticle interactions, already successful searches for superfluid 
properties in BECs, demonstrations of nonlinear physics effects in superfluids 
(vortices, solitons, and “quantum shocks”), the study of mutually coherent BECs,
the demonstration of atom-molecule BECs, and the prospect of using BECs for the
study of quantum measurement theory. 

Los Alamos National Laboratory has been active in exploring several of the above
aspects. The following are some of the Los Alamos contributions and ongoing projects
that we are aware of. On the experimental side, David Vieira and Xinxin Zhao are work-
ing toward the use of an atomic BEC to cool down fermion atoms (see the article
“Experiments with Cold Trapped Atoms” on page 168). On the theoretical side, Peter
Milonni was the first to point out that external electric fields can be used to control the
interparticle interactions in the atom-trap systems (Milonni 1996). Diego Dalvit, Jacek
Dziarmaga, and Wojciech Zurek resolved the puzzle of the lifetime of the proposed
Schrödinger cat states in BEC-like systems, and they have proposed schemes to reduce
the effect of decoherence and increase the cat’s longevity (see the article “Schrödinger
Cats in Atom-Trap BECs” on page 166). In collaboration with experimentalist Roberto
Onofrio (visiting from the University of Padua, Italy), they continue to explore the possi-
ble use of BECs in studies of measurement theory. Lee Collins has explored the vortex
and soliton dynamics in BECs, working closely with the experimental group of Bill
Philips at the National Institute of Standards and Technology (Denschlag et al. 2000).
Gennady Berman and Augusto Smerzi are exploring the possibility of using BECs to
study the boundary between quantum and classical behavior (Berman et al. 2002), as well
as using BECs in optical lattices for interferometry purposes (Dziarmaga et al. 2002). 

Since 1996, I have also been active in BEC research. The prediction for the phase
separation of BECs under specific conditions (Timmermans 1998) has been confirmed
by experiments in Ketterle’s group at MIT. This same group also confirmed our 
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Figure 13. Number-Phase
Energy for Different
Interaction Parameters
The expectation values of the
number-phase energy of
Equation (18) are calculated
with a Gaussian trial wave
function ψ (α) ∝ exp(–α2/ [4x] )
and are plotted as a function of
the width parameter x, which is
related to the phase uncertain-
ty ∆α as x = (∆α)2/2. The differ-
ent curves show H(x) for differ-
ent values of the interaction
parameter (2N2/Γ). From bot-
tom to top, those values are
10, 5, e, and 1. For (2N2/Γ) < e,
the local minimum is also the
global minimum, whereas for
(2N2/Γ) > e, the global mini-
mum occurs in the limit x → ∞,
corresponding to a complete
uncertainty of the phase.

5

3

1

0 1 2
Width parameter x

3 4

E
ne

rg
y 

(in
 u

ni
ts

 o
f U

/2
)

–1

–3

–5

2N2

r = 1

e

5

10



predictions for the reduction of scattering slow distinguishable particles by the 
BEC (Timmermans and Côté 1998) and for the excitation rate of phonon modes in two-
photon scattering experiments. Recently, the group of Wieman at JILA found 
evidence for a prediction by Timmermans et al. (1999) of the formation of an atom-
molecule BEC in the Feshbach resonance scheme that was initially proposed to alter 
the effective interparticle interactions. In a recent collaboration with Milonni of 
Los Alamos and Arthur Kerman of MIT, I pointed out the possibility of creating a fermi-
on-boson superfluid (Timmermans et al. 2001) by bringing an ultracold fermion gas 
mixture near a Feshbach resonance. Finally, I discovered the heating mechanism that
explains the temperature limit encountered by efforts in fermion atom cooling and 
provides the main obstacle for the current experiments to reach fermion superfluidity in
atom traps (Timmermans 2001a).

The variety of approaches and cold-atom research topics at Los Alamos is yet another
measure of the richness of this field. By now, numerous experiments have established
the cold-atom trap as a new kind of laboratory in which to study interesting fundamental
issues in low-temperature, many-body, and nonlinear physics. The unusual control and
the variety of experimental knobs also hint at the possibility of practical applications.
Hopefully, Los Alamos can continue to play a significant role in the ongoing cold-atom
physics adventure. �
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Microscopic quantum superpo-
sitions are routinely observed
in experiment. Macroscopic

quantum superpositions, on the other
hand, are still encountered rarely
despite nearly a century of experimen-
tation with quantum mechanics. Fast
decoherence of macroscopic states is 
to blame for this state of affairs (see 
the articles “Decoherence and the
Transition from Quantum to Classical”
and “The Emergence of Classical
Dynamics in a Quantum World” on
pages 86 and 110). And yet, the past
few years have witnessed several
breakthroughs in the macroscopic
regime. 
To name a few, superposition states of
macroscopic numbers of photons and
atoms have been produced in cavity
quantum electrodynamics, matter-wave
interference in fullerene carbon-60 has
been observed, and controlled decoher-
ence due to engineered environments
has been measured in ion traps.
Recently, the first detection of a macro-
scopic Schrödinger cat state in a radio-
frequency (rf) superconducting
quantum interference device, or
SQUID (a superposition of clockwise
and counterclockwise superconducting
current flow), was reported. All these
achievements tempt one to try similar
investigations of basic quantum
mechanics in the rapidly growing field
of Bose-Einstein condensates (BECs). 

In the article “Atom-Trap BECs” on
page 136, Eddy Timmermans describes
the possible emergence of nonclassical
behavior by number squeezing in a
dilute BEC. For a double-well configu-
ration, the ground state of the conden-
sate is determined by the competition

between the tunneling energy 
Etun = –γEJcosα, which favors states
with a well-defined relative phase
between the wells, and the interaction
energy Eint = (U/2)(N2 + m2), which
favors number states in each well.
When the interaction energy is repulsive
(U > 0), the ground state corresponds to
m = 0, and α = 0, that is, an equal num-
ber of particles in the two wells with
zero relative phase. However, for attrac-
tive interactions (U < 0), the ground
state is very different: It corresponds to
a superposition of states with m = +N

and m = –N, namely,
This state is clearly nonclassical, all N
bosons being simultaneously in the left
well and in the right well. It corre-
sponds to a macroscopic quantum
superposition—a BEC Schrödinger
cat—analogous to Schrödinger’s
Gedanken experiment of a cat in the
weird superposition of being both dead
and alive. 

Various schemes have been pro-
posed for building macroscopic super-
positions in BECs. For example, for a
BEC in a double-well potential with 
an attractive interparticle interaction,
one can in principle create the cat state
through adiabatically cooling down the
BEC until the ground state is reached.
Another option is to confine bosons
that have an attractive interaction
between atoms in two hyperfine levels
(A and B) in a single potential well.
Initially, all atoms in the BEC are in a
given hyperfine state, say A, and then a
resonant rf pulse is applied to the sys-

tem to transfer (or rotate) the atoms
part of the way between state A and B.
The duration of the pulse is much
shorter than the self-dynamics of the
condensate. At this stage, each atom is
in a superposition of levels A and B,
and the corresponding many-body
quantum state is a product of single-
particle superpositions of A and B, that
is, it is still a microscopic superposi-
tion. However, as this initial state
evolves under the nonlinear
Hamiltonian that governs the BEC with
its attractive interparticle interactions, 
it reaches a macroscopic superposition
in which all atoms are simultaneously
in level A and level B, |Ψ〉 =
(1/√2)[|NA,0B〉 + |0A,NB〉]. An even
weirder superposition state has been
proposed, namely, a coherent superpo-
sition of atomic and molecular BECs. 
It must be stressed that, to date, no
experiment has been carried out that
attempts to produce any of the afore-
mentioned superposition states. 

The condensate is an open quantum
system, that is, it is in contact with an
environment mainly composed of non-
condensed thermal particles. The inter-
action between that environment and
the BEC cat state may cause the loss of
coherence between the components of
the quantum superposition. If the deco-
herence time were very small, then the
existence of these states in a BEC
would be merely of academic interest
because there would be no chance of
observing them in the laboratory.
Therefore, it is important to understand
how the thermal cloud affects the
longevity of BEC cat states. In princi-
ple, a single noncondensed atom collid-
ing with the condensed superposition
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state and taking away information
about the phase of the state is enough
to kill the atomic coherence. Estimated
decoherence times for the proposed
BEC cat states are inversely propor-
tional to the product of NE (the number
of noncondensed bosons) and  N2

(where N is the number of bosons 
in the condensate), that is, tdec ≈
105 seconds/(NEN2). For NE from 100

to 104 and N from 101 to 107, the deco-
herence times can range over 16 orders
of magnitude, from 1000 seconds down
to 10–13 second. Given that macro-
scopic cats require big values of N, it 
is clear that, for the sake of the cat’s
longevity, one must go beyond the 
standard trap settings. 

In what follows, we concentrate on a
BEC cat formed with two hyperfine
states A and B. We show that, by using
a combination of trap engineering and
what we call “symmetrization” of the
environment, as illustrated in Figure 1,
one can decrease decoherence rates.
First, one prepares the condensate
inside a wide magnetic trap and then
superimposes a narrow optical dip. 
The parameters of the traps are chosen
such that only a single bound state lies
within the dip. The bosons are forced to
adiabatically condense into that state.
Then the magnetic trap is opened, and
most of the noncondensed atoms are
allowed to disperse away. The aim of
this procedure is to eliminate as much
of the thermal cloud as possible.
However, atoms occupying bound
states within an energy band of width
ΔE at the mouth of the dip may not dis-
perse away, but the occupation numbers
of those states before the opening of the
wide trap may subsist. Those atoms
would stay in contact with the conden-

sate and continue to monitor its 
quantum state and thereby destroy any
chance of the condensate to form a
superposition. Even if such a truncated
environment is relatively harmless,
there are ways to better protect 
the condensate from it. 

What we call “symmetrization” of
the environmental states can further
reduce the decoherence rate. To pro-
duce symmetrization, one applies an 
rf pulse with frequency ν that induces
coherent transitions between states A
and B of all atoms, both condensed
and thermal ones. On the one hand,
the state of the condensate is still a
macroscopic superposition but slightly
different from the original one
(1/√2)[|NA,0B〉 + |0A,NB〉] because the
rf pulse produces a small increase in
the variance of the number of atoms 
in each well. On the other hand, the
single-particle energy spectrum of 
the noncondensed bosons is modified.
It is now composed of two energy-
level ladders shifted with respect to
each other by 2ν. One ladder is shifted
down, corresponding to states sym-
metric under the interchange A ↔ B,
and the other is shifted upwards, cor-
responding to states antisymmetric
under such interchange. When the
energy bandwidth near the mouth of
the dip ΔE << 2ν, only symmetric
environmental states are occupied. 
A collision between atoms occupying
those states and the condensate does
not affect the phase coherence of the
latter because both states and the inter-
action Hamiltonian are symmetric
under the interchange A ↔ B. In other
words, a symmetric environmental
state affects the components (|NA,0B〉
and |0A,NB〉) of the BEC cat in exactly

the same way, multiplying them by a
common phase factor, which obvi-
ously does not affect the phase coher-
ence of the condensate. When the
relation ΔE << 2ν does not hold, 
some atoms will occupy antisymmet-
ric environmental states and can cause
decoherence. However, since that
occupation number can be controlled
by the intensity of the laser field
inducing the coherent transitions
between the states A and B, the
method of symmetrization can still
significantly extend the longevity of
the BEC cat. �
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Those of us who have fun
trying to take a picture of a
fast moving object usually

end up with a blurry, imprecise
image. Something similar happens
when we try to make precision
measurements on moving atoms—
the movement results in a broad-
ening of intrinsic atomic line
widths, and we end up with an
imprecise understanding of the
subtle atomic processes that pro-
duce those lines. Likewise,

detailed studies of the interactions
between atoms are hindered by
motion because energetic colli-
sions between atoms tend to com-
plicate the system’s dynamics
and/or mask quantum effects. In
general, if we are interested in
making precision measurements
on the individual or collective
properties of free atoms, we have
to slow the atoms down. 

Kinetic theory tells us that the
velocity of an atom in a gas is pro-

portional to the square root of the
temperature and inversely propor-
tional to the atom’s mass. The
atoms and small molecules in the
air that we breathe, for example,
move about at astonishingly high
velocities at room temperature—
about 4000 kilometers per hour.
Because the velocity varies only as
the square root of the temperature,
one must make a gas very cold in
order to substantially slow the
atoms. At one degree above
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absolute zero (1 kelvin), atoms
still cruise at a few hundred kilo-
meters per hour. Only when tem-
peratures of a few millionths of a
kelvin (a few microkelvins) are
reached do free atoms move
slowly enough that we can make
high-precision spectroscopic 
measurements. 

Several methods have been
developed that use laser light to
cool gases to the microkelvin tem-
perature range. The cold atoms can
then be contained within different
kinds of atom traps, where they
can be studied very accurately or
cooled to even lower temperatures.
The traps also allow us to concen-
trate a large number of atoms into
a small volume. As the number
density increases, the individual
atoms begin to “feel” one another,
and we can begin to study the
transition from individual to col-
lective behavior. With certain
“bosonic” atomic species, cooling
and trapping techniques enable us
to create one of the most fascinat-
ing—and fragile—states of matter
in the universe, the Bose-Einstein
condensate (BEC). See the box
“The Bose-Einstein Condensate”
on the next page and the article
“Atom-Trap BECs” on page 136.

The atom-trapping team at Los
Alamos National Laboratory has
adapted cooling and trapping tech-
niques to radioactive atoms for
both fundamental and applied
research. We are in the process of

making sensitive measurements of
parity violation in nuclear beta-
decay as a means to test the
Standard Model of electroweak
interactions. We are also trying to
cool a dilute gas of fermions to a
degenerate quantum state (degener-
ate Fermi matter), where the den-
sity is comparable to that found in
a BEC. Aside from displaying
interesting quantum mechanical
properties, ultracold fermions could
undergo a phase transition to a
superfluid state, and our apparatus
should give us unprecedented con-
trol in forming and studying this
system. Finally, we are using atom-
trapping technology to trap and
measure isotopic ratios of selected
nuclear species at ultrasensitive
levels for nonproliferation treaty
verification and environmental
studies.

Cooling and Trapping
Techniques

Laser cooling of neutral atoms
was proposed in 1975 by
Theodore Hänsch and Arthur
Schawlow, both then at Stanford
University. The basic idea was to
use the momentum transfer
between a photon and an atom to
slow the atom down. 

When an atom absorbs a pho-
ton, its momentum is reduced by
an amount p = hν/c where h is
Planck’s constant, ν is the fre-
quency of the light, and c is the

speed of light. When the atom

emits a photon, it gains momen-
tum of the same magnitude (a so-
called momentum kick). If, as in
laser light, all the absorbed pho-
tons come from the same direc-
tion, then after many photon
scattering events (rapid absorption
and emission events), the net
change in momentum will be
unequal, since the fluorescent pho-
tons are emitted in all directions
and the sum of the momentum
kicks averages to zero. The result
is a net loss of momentum.1

To get laser cooling to work, 
we use the Doppler effect to
ensure that only those atoms 
moving into the laser beam 
will absorb photons. The Doppler
effect relates the intrinsic fre-
quency of a source to the fre-
quency “sensed” by an observer
moving relative to the source. 
The pitch of a siren, for example,
sounds higher when we move
quickly toward it (or it moves
quickly toward us) and lower
when we move rapidly away.
Similarly, an atom “sees” the fre-
quency of a photon increase when
the atom moves toward the photon.
Thus, 
if we tune a laser to have a 

1 The change in momentum due to light
scattering means that the atom feels a
pressure, which can be quite large (up to
10,000 times larger than the force of grav-
ity). Radiation pressure provides a very
effective means of moving atoms around. 
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slightly lower frequency than the
resonance frequency of an atom’s

absorption line (detuning), only atoms
that happen to be moving against the
beam see the frequency of the photon
Doppler-shift into resonance (see
Figure 1). These atoms lose momen-
tum and are slowed down (cooled).
Atoms moving in the same direction as
the detuned laser beam are Doppler-

shifted farther away from resonance.
They do not readily absorb photons
and are consequently unaffected. 

To cool the atoms in three dimen-
sions requires six intersecting laser
beams—one pointing in each of the
six directions ±x, ±y, and ±z. Then
any atom that emerges from the inter-
section region will be moving against
a properly tuned laser beam and will
be cooled. 

Figure 1. Laser Cooling
(a) An atom illuminated by laser light

will absorb and reemit (scatter) many
photons. (b) If the laser frequency is
tuned below the atomic resonance line
(red detuned), then an atom moving
against the laser beam “sees” a laser
frequency that is Doppler-shifted closer
to the absorption maximum. It absorbs
the low-energy laser photons. The atom
then emits a higher-energy photon at
the resonance frequency of its transi-
tion line. The atom loses energy with
each absorption/emission event and
begins to cool. (c) An atom moving in
the same direction as the laser beam
“sees” the detuned laser frequency
Doppler-shifted still farther away from
its absorption maximum. The atom
absorbs few photons and is not cooled.

Atom’s 
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profile

Doppler-shifted 
laser line

Doppler-shifted laser line

(b) Atom Moving into Laser Beam

Laser line

(c) Atom Moving with Laser Beam

Frequency
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Absorbed photons
Σ pi = –P 

Laser beam

Atom

(a) Momentum Transfer

The Bose-Einstein Condensate 

Elementary particles—and collections of particles such as nuclei and
atoms—are either fermions (and have half integer spin) or bosons (and
have integer spin). In the mid-1920s Albert Einstein, building on the
work of Satyendra Nath Bose, predicted that, at exceptionally low ener-
gies, an ensemble of massive bosons should undergo a transition into a
state that is described by a single, coherent wave function. This coherent
state—now called the Bose-Einstein condensate (BEC)—would be as dif-
ferent from ordinary matter as laser light is from sunlight. 

Physicists believed that a dilute gas of bosons could form a BEC, but 
the conditions needed to produce one are extreme. In order to become
coherent, or establish a common phase relationship amongst themselves,
the atomic wave functions must overlap significantly with one another.
The spatial extent of the atomic wave function is given by its de Broglie
wavelength λ, and it can be shown that the BEC will form if the atom
density, expressed as the number of atoms in a λ-sided cube, exceeds 2.6.
Both the de Broglie wavelength and the density of a gas depend on tem-
perature, and one can calculate how cold it must be to achieve the critical
density in a cold boson gas. The answer is, on the order of a few hundred
billionths of a kelvin. 

Certainly, one problem in creating a BEC was to find a gaseous system 
that would not coalesce into a solid as the temperature plunged toward
absolute zero. The solution was to use certain alkali atoms (atoms from
group I of the Periodic Table). When spin-polarized, these atoms have a
weak repulsive force between them that would ensure that the system
remained a gas. A BEC of rubidium-87 atoms was finally created and
observed in 1995 by Carl Weiman’s and Eric Cornell’s group at the
University of Colorado / JILA (Joint Institute for Laboratory Astrophysics).
Four months later, Wolfgang Ketterle’s group from the Massachusetts
Institute of Technology created a BEC from sodium-23 atoms. Since that
time, a BEC has been observed in several other bosonic alkali species, 
such as hydrogen-1 and lithium-7. All the efforts involved cooling the
atoms (except hydrogen atoms) to less than a millikelvin in what is called a
magneto-optical trap (MOT), reducing the temperature by another order of
magnitude by laser cooling, and then transferring the atoms to a magnetic
trap. There, the atoms are cooled by a technique known as evaporative
cooling to less than 200 nanokelvins to create a BEC. 



The force experienced by an atom
during laser cooling is velocity
dependent; that is, its magnitude
depends on the atom’s velocity as it
moves toward the laser beam. (The
three-dimensional laser cooling is
often called an optical molasses
because velocity-dependent forces
are viscous forces and the atom
behaves as if it were entrained in a
viscous liquid. The term optical
molasses was coined by Steven Chu
of Stanford University.) Velocity
dependence means that the cooling
rate decreases as the atom slows
down. When the velocity gained by
the atom as it emits a photon (the
atom recoil) equals the loss of veloc-
ity due to the scattering process, the
cooling ceases altogether. The mini-
mum velocity of the atom at the
“recoil limit” translates into a mini-

mum temperature.2 For sodium
atoms, the recoil limit is
2.4 microkelvins and for somewhat
heavier cesium atoms it is about
0.2 microkelvin. 

The Magneto-optical Trap
(MOT). Although optical molasses
cools atoms down to very low temper-
atures, the atoms can diffuse out of the
laser region through random Brownian
motion. The MOT was invented to
prevent this loss and to confine the
atoms. The idea behind the MOT is to
combine the optical molasses with an
external magnetic field and thereby
create a spatially dependent force that
acts only on atoms that wander from
the trap’s center. The MOT was fully
developed in David Pritchard’s labora-
tory at MIT in 1987. Because of its
relative ease of construction and great
utility, it is perhaps the most com-
monly used atom trap. 

For this trap, three pairs of coun-
terpropagating, circularly polarized

laser beams (σ+ and σ– polarizations)
establish an optical molasses within a
vacuum chamber, as seen in Figure 2.
Outside the molasses region are two
magnetic coils. The current in each
coil runs in opposite directions (anti-
Helmholtz configuration) and creates
a “quadrupole” magnetic field, which
has zero field value at the center
between the two coils. The field gra-
dient increases linearly as one moves
out from the center in any direction. 

The trap works because an atom’s
magnetic substates (m-states) have
different energies in a magnetic field
(the Zeeman effect), and due to the
field gradient, the m-state energy
increases (or decreases) as the atom
moves out from the center of the
MOT. With reference to Figure 2(b),
an atom in the trap will be illuminated
with both σ+ and σ– circularly polar-
ized laser light. Suppose the atom
moves away from the center of the
trap, say, in the (+z)-direction, so that
it moves into the σ– laser beam, but
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2 There are also subrecoil laser-cooling
mechanisms that can cool atoms below
the recoil limit. 

(a) The MOT consists of six circularly polarized laser beams
that intersect at the zero point of a magnetic field (produced
by the set of anti-Helmholtz magnetic coils). The tube 
projecting from the left is used to bring atoms into the 
evacuated glass cell located between the coils. (b) This
schematic energy diagram indicates why trapping occurs.
The σ– polarized light induces a transition from the ground
state |S, ms〉 = |0, 0〉 to the |1, –1〉 excited state, whereas the σ+

polarized light will induce a transition from |0, 0〉 to |1, +1〉. The
atom’s magnetic substates are Zeeman-split by the magnetic

field. As the atom drifts away from the center of the MOT,
say, to the right of the diagram, an atomic transition to the
ms = –1 substate shifts onto resonance with the σ– polarized
laser and starts to preferentially absorb these photons over
the σ+ polarized laser coming from the opposite direction.
The resulting laser-induced pressure “pushes” the atom back
toward the center. The result is the same if the atom moves
out in any direction from the center of the trap.
[Part (b) of the figure was adapted from Phys. Rev. Lett. 59 (1987), p. 2631, with

permission from the authors.]
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Figure 2. The Magneto-optical Trap (MOT)



in the same direction as the σ+ laser
beam. Both lasers are tuned slightly
below the |S = 0〉 → |S = 1〉 resonance
frequency. At some distance from the
MOT center, the drifting atom will
come into resonance with the incom-
ing σ– radiation (but not with the σ+

light). Similar to the way in which it
absorbs light in an optical molasses,
the atom will begin to absorb more of
the σ– light and will feel a pressure
that pushes it back toward the center
of the MOT. Likewise, an atom mov-
ing in the (–z)-direction (or ±x, ±y
directions) will preferentially absorb
photons from the inward-directed
laser beam and will be pushed back
toward the trap’s center. Because the
magnetic field is symmetric, the atom
becomes trapped in three dimensions. 

Magnetic Traps, Evaporative
Cooling, and the Time-Orbiting
Potential (TOP). While the MOT
requires lasers to trap the atoms, mag-
netic fields alone can create a trapping
potential. A pure magnetic trap makes
use of the fact that atoms will experi-
ence a magnetic dipole force in a
magnetic field gradient F = –µ•∇B,
where µ is the atom’s magnetic
moment and ∇B is the magnetic field
gradient. If the atom is polarized into
the |m = 1〉 substate, the force will be
toward lower magnetic-field values.
The atom is diamagnetic and can be
trapped by a simple magnetic quadru-
pole field, which has a zero magnetic-
field value at the center. 

Magnetic traps are easy to con-
struct, but they have fairly weak trap-
ping potentials (about 1000 times
weaker than found in a MOT). They
can only trap atoms that are already
very cold, with thermal energies
equivalent to 1 millikelvin or less.
Once inside a magnetic trap, the atoms
can be cooled to the limits of laser
cooling. To reach the temperatures
needed to create a BEC, however, we
need another cooling technique,
namely, evaporative cooling. 

Temperature is a measure of the
average kinetic energy of a system,
and in a gas, the energy is distributed
amongst the atoms according to a
Maxwell-Boltzmann distribution. This
means that some atoms always have
greater than the average energy. We
can efficiently cool a gas by removing
the highest-energy atoms. After the
remaining gas re-equilibrates, it will
have a lower average energy. The
common name for this process is
evaporation. A liquid that is evaporat-
ing (say a steaming cup of coffee)
cools down because the most energetic
atoms leave (and form the rising
steam). 

To further cool the already cold

atoms, we actively eject the most
energetic particles. We stated that the
magnetic trap holds onto diamagnetic
atoms. But atoms polarized in the 
|m = –1〉 substate are paramagnetic
and will be attracted to the higher
magnetic fields outside the trapping
region. A radio-frequency (rf) field
can be used to induce transitions
between magnetic substates and con-
vert an atom that is diamagnetic to
one that is paramagnetic, at which
point it is ejected from the trap. The
frequency of the rf field is chosen
such that only atoms with enough
energy to move to the edge of the
magnetic potential well come into res-
onance with the rf field (see Figure 3).
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Figure 3. Evaporative Cooling
(a) The figure shows the magnetic sublevels of an atom as a function of magnetic-
field strength. An atom in the state |m = 1〉 is diamagnetic because it has lower
energy in weaker magnetic fields. (Therefore the atom is attracted to regions of
weaker field.) Conversely, atoms in the state |m = –1〉 are paramagnetic (that is,
attracted to regions of higher magnetic fields). If the atom is illuminated by an rf
radiation of frequency ν0, then at some magnetic-field value, the atom can come into
resonance with the radiation and undergo a transition from |m = 1〉 to |m = 0〉, and
then from |m = 0〉 to |m = –1〉. The diamagnetic atom converts into a paramagnetic
one. (b) The evaporative cooling technique removes the most energetic atoms from
a magnetic trap. Atoms in the trap are polarized in the |m = 1〉 (diamagnetic) state
and are trapped by the quadrupole magnetic field. The most energetic atoms make
the greatest excursions from the trap center and move into regions of higher mag-
netic field. These atoms come into resonance with an rf field and are converted to
paramagnetic atoms, which are ejected from the trap. (They move to high-field
regions outside the trapping volume.) After reequilibration through atomic colli-
sions, the remaining atoms reach a lower temperature.



After ejecting the most energetic
atoms from the trap, the rf frequency
is readjusted so that once again the
most energetic atoms of the now
colder gas are ejected. In this way, it
is possible to successively skim off
the hottest atoms and thereby evapo-
ratively cool the atoms. 

One problem with this cooling
scheme is that the quadrupole field
has zero field strength at the center of
the trap. Consequently, the magnetic
substates are not Zeeman-split at the
center of the trap, so polarized atoms
can undergo spontaneous spin-flip
transitions to the |m = 0〉 or |m = –1〉
substates in this region. The loss rate
by this mechanism increases as the
atoms become colder, making it diffi-
cult to achieve the critical BEC condi-
tions of high atom density and low
temperature. 

The TOP trap, developed by Eric
Cornell and collaborators, eliminates
this problem by adding an off-axis
bias field to the static quadrupole

field. As seen in Figure 4, the mini-
mum of the total magnetic field
becomes shifted away from the trap
center. By rotating the bias field, the
time-averaged total field still retains
its basic quadrupole configuration, but
now it has positive field strength at
the center, so the atoms remain polar-
ized. The bias field must rotate faster
than the atoms can respond,3 but this
objective is easily achieved. The TOP
trap allows the density of atoms in the
trap to increase sufficiently as the
atoms are evaporatively cooled to
reach the conditions for a BEC. 

Atom Trapping at 
Los Alamos

Having cold, almost frozen, atoms
at our disposal allows us to perform
high-precision experiments to test
quantum theories of ultracold ensem-
bles of atoms and the nature of funda-
mental forces. Our system at Los
Alamos, illustrated in Figure 5, com-
bines several of the techniques and
traps discussed above. A high-effi-
ciency MOT that is coupled to an off-
line mass separator is used for
trapping radioactive atoms. Once the
atoms are trapped, they can be
counted with high sensitivity (via flu-
orescence detection) or transferred to
another trap, where various experi-
ments can be performed. At present,
we are pursuing a number of research
initiatives. 

Parity Violation in Nuclear Beta-
Decay. Spatial reflection symmetry,
otherwise known as parity conserva-
tion, maintains that the fundamental
processes of nature should be the
same under a spatial inversion of all
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Anti-Helmholtz (quadrupole) coils

Trapped atoms

Helmholtz (bias) coils

Figure 4. The Time-Orbiting-
Potential (TOP) Trap
(a) The TOP trap is a magnetic trap that
combines two magnetic fields: a
quadrupole field (produced by the cen-
tral, anti-Helmholtz coils) and a bias
field (produced by the outer Helmholtz
coils). (b) With the addition of the bias
field, the potential minimum of the mag-
netic trap shifts off-axis. By adjusting
the current in the Helmholtz coils, we
make the bias field rotate around the
trap axis and produce a time-averaged
total field with a positive field strength
at the center of the trap. As long as the
bias field rotates fast enough, the atoms
will remain polarized and stay trapped.

3 The atoms oscillate within the harmonic
potential well of the TOP trap. If the
atoms are to experience the time-averaged
magnetic field, the bias field must rotate
faster than the atoms’ period of oscillation.

No bias field Bias switched on Rotating bias

(a)

(b)



vector parameters. Parity conservation
was verified in electromagnetic and
strong interactions, but as a startled
physics community discovered in the
1950s, not in the weak interaction.
Despite the astounding progress that
has been made in understanding funda-
mental forces over the past fifty years,
the origin of parity violation in the
weak interaction remains a mystery of
modern science. We hope to make a
very precise measurement of the
degree of parity violation in rubidium-
82 as a means to test current theories. 

One way the weak interaction man-

ifests itself is through a type of
nuclear beta-decay, whereby a proton
in a parent nucleus decays to a neu-
tron, a positron (also known as a beta
particle) and an electron neutrino. 
A daughter nucleus with a different
atomic number is created in the
process. For example, in rubidium-82
decay,

82Rb —> 82Kr + e+ + ν . 

For the initial and final states of inter-
est, this decay involves pure Gamov-
Teller transitions that proceed solely

through the axial-vector (parity-
violating) component of the weak
interaction and is predicted by the
Standard Model to be maximally parity
violating. If the rubidium-82 nucleus
is polarized by a magnetic field, then
parity violation would manifest itself
as an asymmetry in the angular distri-
bution of the emitted positrons rela-
tive to the nuclear spin direction. For
the primary beta-decay branch (in
which the rubidium-82 nucleus decays
to the 0+ ground state of krypton-82),
the positron is emitted in the direction
of the nuclear spin. (In a secondary,
less probable decay branch, the
positron comes out in a direction
opposite to that of the nuclear spin.) 

We have recently demonstrated the
trapping of polarized, radioactive
rubidium-82 atoms. A radiochemically
separated sample of strontium-82 
(t1/2 = 25 days) is loaded into the ion
source of a mass separator. The stron-
tium-82 decays by electron capture to
rubidium-82 (t1/2 = 76 seconds). 
The rubidium-82 atoms are thermally
ionized, electrostatically extracted,
mass separated, and implanted into a
zirconium catcher foil located inside 
a glass cell that sits at the center of a
high-efficiency MOT. Heating the foil
releases the atoms as a dilute vapor
into the glass cell where they are
trapped and cooled. 

The atoms are rapidly transferred
to a second chamber by resonant laser
light “pushing” on them. In the second
chamber, the atoms are retrapped in a
second MOT, further cooled, optically
pumped into a specific magnetic 
substate, and loaded into a TOP
magnetic trap. Being in a stretched
state, the nuclear spin is aligned 
with the overall spin of the atom.
Consequently, the nuclei are polarized
and aligned with the local field. In 
the center of the TOP, the strongest
field is in the direction of the bias
field, so the direction of the nuclear
spin rotates with the bias field. 

By keeping track of the varying
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Figure 5. Los Alamos Setup to Trap Radioactive Atoms
Cooling atoms to ultralow temperatures must be done in stages, with several traps
and laser configurations. In the setup at Los Alamos, energetic, radioactive atoms
from an ion source are implanted into a thin metal foil that sits within an evacuated
glass cell, around which are the MOT field coils. Heating the foil releases the atoms
into the cell where they are trapped in the MOT and cooled to about 100 µK. The
MOT is turned off, and a laser pushes the atomic cloud into the evacuated chamber
of a second MOT, where the atoms are recaptured. The magnetic field of this second
MOT is turned off and an optical molasses is established by detuning the frequency
of the laser further to the red (that is, to lower frequency). Within a few milliseconds,
the atoms have cooled to approximately 20 µK, and then they are optically pumped
into a diamagnetic substate with a polarized laser beam. The optical pumping beam
is then turned off, and the magnetic field is quickly ramped up in a TOP configura-
tion. We plan to use evaporative cooling to bring the atoms to a final temperature of
a few hundred nanokelvins.



currents in the bias coils of the TOP
trap, we can reconstruct the direction
of the bias field, hence the spin align-
ment, as a function of time. We can
then correlate each beta event with the
orientation of the nuclear spin, and
record the angle between the beta and
the nuclear-spin direction. In Figure 6,
we show our initial proof-of-principle
results, which indicate that parity is,
as expected, violated in the beta decay
of polarized rubidium-82 atoms. This
is the first time that the entire angle-
dependent parity-violating amplitude
has been measured. 

We are in the process of making a
1 percent measurement of this correla-
tion in order to place stringent limits
on the maximal parity-violating nature
of the weak interaction. We hope to
extend that measurement to 0.1 per-
cent and to search for new physics
beyond the Standard Model.4

Ultracold Atoms / Quantum
Degenerate Matter. The ability to
trap and cool different isotopes enables
us to explore mixed fermionic and
bosonic systems. In particular, we are
working to produce a BEC of bosonic
rubidium-87 and overlap it with a
magnetically trapped cloud of radioac-
tive, fermionic rubidium-84. In doing
so, we hope to sympathetically cool,
via atomic collisions, the rubidium-84
atoms down to the Fermi degenerate
regime (approximately 10 to 
100 nanokelvins). We want to study
the fermion-fermion and fermion-
boson collision dynamics at tempera-
tures approaching absolute zero.

Recent calculations show that
rubidium-84 is a good fermionic can-
didate for sympathetic cooling
because it has a large and positive
scattering length with rubidium-87.
Calculations also indicate, however,
that, in the presence of a relatively
low magnetic field (B ~ 100 gauss), a
Feshbach resonance should be present
in rubidium-84. This resonance allows
two colliding atoms to form a tempo-
rary molecule before separating, and

by adjusting the magnetic-field value,
we can fine-tune the energy at which
the resonance occurs. In doing so, we
can control the collision cross section
and effectively “tune” the temperature
at which a phase transition to a super-
fluid state will occur. 

The radioactive rubidium-84 atoms
(t1/2 = 33 days) for our experiments
are produced by proton spallation
reactions on a molybdenum target at
the Los Alamos Neutron Scattering
Center. The rubidium is chemically
extracted from the molybdenum 
and loaded into the ion source of a
mass separator. The rubidium-84 is
implanted and captured in the MOT
in a similar procedure to that
described in the previous section. 

As an initial step toward achieving
our goal, we have demonstrated the
trapping of rubidium-84. Figure 7(a)
shows the time-dependent trapping
signal from roughly one million
trapped rubidium-84 atoms. At high
atom densities, the losses from the trap
are dominated by laser-light-assisted
collisions between trapped atoms.  

By overlapping a cloud of 3 × 105
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Figure 6. Measurement of Parity Violation 
(a) The figure shows the TOP trap of our experimental system.
The nuclei of the trapped rubidium-82 atoms are spin polarized
and always point in the direction of the TOP’s rotating bias field.
By monitoring the currents that produce the bias field at any
given time, we can reconstruct the magnetic-field orientation;
hence, we know the nuclear spin direction. A plastic scintillator
is used to detect the emitted positrons. When a positron is
detected, we reconstruct the nuclear-spin direction and can 

determine the angle θ between it and the positron emission
direction. (b) Because parity is not conserved in the weak 
interaction, the spin-polarized rubidium-82 nuclei will decay by
preferentially emitting positrons in the direction of the nuclear
spin. (c) This plot of rubidium-82 beta-decay data, accumulated
over a period of 6 hours for positrons with energies above
800 keV, shows the parity violating the angular distribution of 
the positrons.The red line is a cosine fit to the distribution.
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4 This work is done in collaboration with
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cold atoms of rubidium-84 with a
large cloud of 7 × 107 atoms of stable
rubidium-87, we have also been able
to set a limit on the inelastic-collision
loss rate of the atoms from the trap,
which could affect the rubidium-84
trapping lifetime—see Figure 7(b).
Fortunately, this loss rate was found to
be sufficiently small and did not pres-
ent a problem for the sympathetic 
cooling experiment. We are currently
optimizing the evaporative-cooling

process to achieve quantum degener-
acy for the bosonic rubidium-87 and to
study its cooling of rubidium-84
(Crane et al. 2000).

Ultrasensitive Detection. As a result
of fallout from atmospheric nuclear
tests, the two radioactive isotopes
cesium-135 (t1/2 = 2.3 × 106 years)
and cesium-137 (t1/2 = 30 years) are
ubiquitous in the environment, at a rela-
tive abundance of roughly 1 part per
billion with respect to stable cesium-

133. (The fission product isotopes are
man-made, that is, anthropogenic.)
Cesium adsorbs strongly and rapidly to
soil particles, and because the heavier
isotope cesium-137 is relatively easy
to detect through gamma-ray 
spectrometry, it has served as a
chronometer and tracer in a diverse
array of scientific endeavors, includ-
ing studies of soil erosion and lake
sedimentation. 

The long radioactive lifetime of
cesium-135, however, severely limits
its detection by gamma-ray spectrome-
try. This is unfortunate, since a meas-
urement of the cesium-137/cesium-135
isotope ratio would lead to a relatively
unambiguous determination of a sam-
ple’s age. Furthermore, that particular
ratio is of interest for nonproliferation
and treaty verification because the
cesium-137/cesium-135 content of
nuclear-fuel effluent can provide valu-
able information about nuclear-reactor
operations. 

Detecting both isotopes, especially
from random environmental samples,
requires that we have a highly sensi-
tive, highly selective technique.
Several advanced technologies,
including resonant ionization mass
spectrometry (RIMS), have been suc-
cessfully applied to the problem, with
the RIMS method achieving a detec-
tion limit of about 1 × 108 atoms, an
estimated isotopic selectivity of about
1010, and an overall efficiency (from
source size to detectable sample size)
of 2 × 10–6. 

We recognized that, when coupled
to a mass separator, a MOT could do
even better. Because the trapping
potential of a MOT derives from a
multiphoton, near-resonant absorption
process, it is very species selective
(atomic, isotopic, and isomeric) with
respect to what it traps. The mass sep-
arator also has high isotopic selectiv-
ity, so a mass separator/MOT system
affords a huge suppression of signals
from unwanted species. A MOT
“detector” should also have high sen-
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Figure 7. Lifetimes in a MOT: Rubidium-84 with and without an
Overlapping Cloud of Rubidium-87
How long will a MOT confine half a million rubidium-84 atoms? The data indicates
that the answer depends on the atomic density. (a) At high densities (short times),
light-assisted collisions between trapped atoms dominate. These give rise to the
short-lived component (t1 = 12.8 s) of the overall trap lifetime. (The inset shows a fit
to the short-lived component.) As the number of trapped atoms decreases and the
density goes down, light-assisted losses become negligible and only collisional
losses between the cold atoms and the hot background gas remain. The collisional
losses correspond to the long-lived component, with a lifetime of about 59 seconds.
(b) Introducing rubidium-87 atoms into the trap could lead to collisions between the
rubidium isotopes and an enhanced loss rate. This figure shows the normalized life-
time in the trap of rubidium-84 atoms with and without an overlapping cloud of
rubidium-87 atoms (solid line and dashed line, respectively). The additional loss rate
is sufficiently small that it does not present a problem for the sympathetic cooling
experiment discussed in the text.



sitivity. Each trapped atom can scatter
(rapidly absorb and emit) about 107

photons per second, so even small
numbers of atoms can be detected. 

We are the first group to have suc-
ceeded in trapping and detecting
cesium-135 and cesium-137 in a
MOT. A sample containing both 
isotopes was placed in the source of a
mass separator, and each isotope was
sequentially measured with a MOT.
Trapped-atom numbers in the case of
either isotope ranged from 104 to 107,
as determined from the MOT fluores-
cence signal. Over this trapped-atom
range, the MOT fluorescence signal
was found to increase linearly with
the number of atoms implanted into
the foil with no sign of an isotopic
dependence to within 4 percent. 

Direct measurement of the cesium
fluorescence signals should yield the
cesium-137/cesium-135 ratio. In prin-
ciple, our mass separator/MOT tech-
nique can make that determination to
within 10 percent of uncertainty.
Currently, the system has a detection
limit of about 106 atoms, an isotopic
selectivity of greater than 1012, and an
overall efficiency of 0.5 percent. As
such, our work represents a significant
advance in efficiency and isotopic
selectivity among other methods
applied to the detection of cesium
radioisotopes (Di Rosa et al. 2002.).
More important, our results demon-
strate the advantages of applying
atom-trapping techniques to the gen-
eral problem of ultrasensitive detec-
tion.

Conclusions

Over the last decade, advances in
the laser cooling and trapping of atoms
have revolutionized the prospects of
fundamental research and applied
quantum-based projects. In atomic
physics, scientists have gained
unprecedented control over quantum
ensembles, as witnessed by the cre-

ation and wide study of BECs today.
But the new trapping and cooling tech-
niques should not be viewed as simply
a workhorse for quantum optics and
atomic physics. Their use has spread to
nuclear physics (as in our rubidium-82
experiment), biophysics, condensed-
matter physics, quantum information,
and environmental science (as demon-
strated by our cesium experiments).
The results of this “cross-fertilization”
have in turn enriched the field of
atomic physics. We believe the atom-
trapping revolution is just beginning
and that in the years to come there will
be many new exciting interdisciplinary
opportunities. �
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Something wonderful happens
when small numbers of ions are
trapped in a linear Paul (radio-

frequency, or rf) trap and laser-cooled.
The ions become nearly motionless
and line up neatly along the trap
axis—each confined to its own tiny
space of about 100 micrometers or
less in any direction. Because the ions
are frozen in place, experimental
physicists can continually observe
them for up to months at a time and
gain uncommon insight into the 
quantum realm.

For example, single ions exhibit
quantum-mechanical effects that could
never be observed in a large ensemble
of ions or neutral atoms. A large field
of study in quantum optics has in fact
emerged with the development of ion
traps (Thompson et al. 1997). In addi-
tion, the internal transitions of a nearly
motionless ion are only slightly 
affected by Doppler shifts, and the 
ion can be superbly isolated from
unwanted electric fields and noisy
magnetic fields. This characteristic
makes a trapped ion a useful testing
ground for many physical theories that

predict very small shifts of the atomic
energy levels (Berkeland et al. 1999).
Finally, a focused laser beam can inter-
act first with one specific ion, then a
different one—a capability that means
we can control complicated interactions
between states of a particular ion and
between different ions. For this reason,
the ion trap has shown considerable
promise as the basis for a quantum
computer. (See the article “Ion-Trap
Quantum Computation” on page 264.) 

In this article, I discuss some of
our activities with trapped and laser-
cooled ions. I focus on an experiment
that provides a fundamental test of
quantum-mechanical randomness but
also mention a spectroscopy experi-
ment that is a prerequisite to the
development of a quantum logic gate.
For background material, see the pre-
viously mentioned article, “Ion-Trap
Quantum Computation,” which dis-
cusses the operational principles of a
linear Paul trap and laser cooling.

We conduct our experiments using
singly ionized strontium atoms. 
Figure 1(a) is an illustration of our 
linear Paul trap (Berkeland 2002).

Most of the trap has been created with
off-the-shelf components and requires
no precise or otherwise demanding
machining to assemble. This feature is
significant because it shows that ion
trapping with linear traps can be an
accessible technology for groups with
limited resources.

Figure 1(b) shows the transitions
we use in the strontium ion 88Sr+. We
use the 422-nanometer transition to
Doppler-cool the ions. We also collect
the 422-nanometer fluorescent light
from the decay of the P1/2 state and
focus it onto a detector to image the
ions. Light at 1092 nanometers drives
the D3/2 ↔ P1/2 transition to prevent
the atoms from pooling in the long-
lived D3/2 state, in which they would
not scatter any 422-nanometer light. 
A 674-nanometer diode laser drives
transitions between the S1/2 ground
state and the D5/2 state, which lives an
average of 0.35 seconds. This transi-
tion can be used to couple the S1/2 and
D5/2 states of the ion with its motional
states, any of which may be used as
qubits in a quantum computer. The
S1/2 ↔ D5/2 transition is also driven
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so that quantum jumps can be
observed in the experiments discussed
next. 

Quantum Randomness 

In the article “A New Face for
Cryptography” on page 68, the

authors describe the quantum cryp-
tography project at Los Alamos.
Cryptography applications, whether
classical or quantum, require strings
of numbers (typically 1s and 0s) that
are as random as possible. Generating
random numbers, however, is not a
trivial matter. In fact, the random
number generators found in various

computer programs are do not yield
very random numbers because they
are based on algebraic processes that
are intrinsically deterministic. 

It is generally accepted that pro-
ducing strings of truly random num-
bers requires measuring the random
outcome of a quantum-mechanical
process. One example of a random
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(a) A schematic of the linear trap depicts five 88Sr+ ions along
its axis (not to scale). The ions in this trap are confined radial-
ly in a time-averaged potential that is created by applying 
100 V at a frequency of 7 MHz to the two electrodes shown.
The other two electrodes are held at a constant potential.
The tubular electrodes (labeled “sleeves”) are held at constant
potentials up to 100 V, relative to the other electrodes, to stop
the ions from leaking out of the ends of the trap. The picture
of five Sr+ ions was made by focusing the 422-nm light scat-

tered from the ions onto an intensified charge-coupled-device
camera. The ions are spaced about 20 µm from each other.
(b) The diagram shows the relevant energy levels of Sr+ and
the corresponding transitions (not to scale). We use 422-nm
light from a frequency-doubled diode laser to Doppler-cool the
ions and collect the scattered 422-nm light to detect the ions.
A fiber laser generates 1092-nm light that keeps the ions from
becoming stuck in the long-lived D3/2 state. A very stable
diode laser at 674 nm drives the narrow S1/2 ↔ D5/2 transition.

About forty strontium ions lined up in our linear Paul trap are visible because they scatter laser
light. The apparent gaps are due to other ions that do not scatter the light.

Figure 1. Strontium Ion Linear rf Paul Trap



outcome is a photon hitting a beam
splitter (Jennewein et al. 2000). The
photon has a probability to either pass
through the optic or reflect off it, and
only a measurement determines its
fate. Another example is the decay of
radioactive nuclei, which emit, say,

alpha particles at unpredictable times
(Silverman et al. 2000). Although both
those processes are believed to be ran-
dom, they suffer from one major
drawback in a test of their statistics:
As in any experimental setup, all the
detectors have physical limitations.

Therefore, we cannot be sure that we
would detect every photon or alpha
particle. It is possible that some non-
random processes might be over-
looked in analyzing the incomplete
data set. 

In contrast, a very clean way to test
the statistical nature of quantum
processes is to analyze the behavior of
an atom undergoing quantum jumps
(Erber 1995). Quantum jumps are the
sudden transitions from one quantum
state to another. As Figure 2 shows, a
strontium ion in the S1/2 ground state
will absorb a photon from a laser tuned
to 422 nanometers and “jump” to the
P1/2 excited state. Because the P1/2
state is short-lived, the ion quickly
returns to the S1/2 state by emitting a
422-nanometer photon in a random
direction. Once it returns to the S1/2
state, the ion can absorb and emit
another photon, and because the life-
time of the P1/2 excited state is so
short, the ion will scatter millions of
photons per second. We can detect
enough of the scattered light with an
optical system to observe the ion but
not enough to determine every time the
ion jumps to and from the P1/2 state.

To directly observe quantum
jumps, we simultaneously illuminate
the ion with a 422- and a 674-
nanometer laser light. In addition to
jumping to the P1/2 state, now the ion
can also jump to the D5/2 state. As
soon as that transition occurs, the ion
will stop scattering 422-nanometer
light. The scattered light will return
the moment the ion has left the D5/2
state. As Figure 2 shows, we can 
very easily record every time a 
single ion makes a transition to the
D5/2 state and every time it returns to
the S1/2 state. According to quantum
theory, the exact times of those transi-
tions are completely unpredictable.
Surprisingly, this prediction has not
been tested with data sets comprising
much more than about a thousand 
consecutive events. It is important to
test very large sets of data because it
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Figure 2. Quantum Jumps in a Single Trapped 88Sr+ Ion 
(a) When illuminated by 422-nm radiation, a single strontium ion will cycle between
the S1/2 and P1/2 states and will scatter millions of photons per second. Some of the
scattered light can be collected with a simple optical detector in order to monitor
the state of the ion. (b) If the ion is simultaneously illuminated with 674-nm radia-
tion, it will occasionally undergo a transition (“quantum jump”) from the S1/2 state
to the long-lived D5/2 state. The scattered light then disappears. (c) This plot shows
typical data from the quantum-jump experiment. When the count rate is over
50 counts per 10 ms, the atom is cycling between the S1/2 and P1/2 states. When the
count rate suddenly falls to less than 50 counts per 10 ms, the atom has made a
transition into the D5/2 state. We continuously monitor the ion’s scattering rate for
nearly an hour to observe tens of thousands of these transitions.
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is harder to make a nonrandom series
of numbers appear random if the
series is very long.

Many tests can be used to deter-
mine the degree of randomness in a
string of data. Figure 3(a) shows the
result of one such test applied to our
quantum-jump data (Itano et al. 1990).
A single atom was continuously moni-
tored until it had made over 34,000
transitions in and out of the D5/2 state.
We record the length of each time
period Ton,i, during which the atom
continually scatters 422-nanometer
photons, and the length of each subse-
quent time period Toff,i, during which
the ion scattered no photons because it
was in the D5/2 state. For example, in
the figure, the values of Toff are
Toff,1 = 0.23 second, Toff,2 = 0.1 sec-
ond, Toff,3 = 0.61 second, and
Toff,4 = 0.17 second. 

We then sift through the data to
determine the number of times a par-
ticular pair of values (Toff,i, Toff,i+1)
occurs and make the color-coded plot
shown in Figure 3(a). The symmetry
and shapes of these graphs reflect 
several important characteristics of
the data. For example, a pair of val-
ues, say (Toff,i, Toff,i+1) = (0.23 sec-
ond, 0.1 second), is just as likely to
occur as the pair (0.1 second, 0.23
second)—a long period of fluores-
cence is no more likely to be fol-
lowed by a short one than a short
period is likely to be followed by a
long one. Essentially, plots like these
indicate that the ion has no memory
of what it was doing just the briefest
moment before it fluoresces. This
fundamental feature of quantum
processes has not previously been
tested precisely. It is also exactly
what one would like to see in a ran-
dom number generator. 

We can easily convert the quan-
tum-jump data into a string of 1s and
0s. If Ton,i is more than a set amount
of time, we assign to that event the
value 0. Likewise, if Ton,i is less than
this time, we will assign the value 1
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Figure 3. Analyzing Quantum-Jump Data
The scatter plots show consecutive periods that the ion spends (a) scattering
422-nm photons (Ton,i, Ton,i+1) and (b) not scattering 422-nm photons (Toff,i, Toff,i+1).
Because these graphs are symmetric about their diagonal axis, we can tell that the
ion is just as likely to spend a long time scattering photons followed by a short time
scattering photons as it is to spend a short time followed by a long time scattering
photons. This is one of many indications that the ion has no memory of when it has
made a transition between the S1/2 and D5/2 states. (c) The quantum-jump data can
also be converted to digital data. The first set of numbers shows a string of consecu-
tive times spent in the D5/2 state (Toff,i). If the ion spends 30 ms or more in the D5/2
state, the event is assigned a value of 0. Otherwise, the event is assigned a value of
1. These assignments are shown in set 2. With strings of tens of thousands of these
digital numbers, we can use established protocols to test the randomness of our
quantum-jump data.



to the event. Figure 3(b) gives an
example of this conversion for a 
typical set of data.

Digitizing our data lets us use
some of the established protocols
that test the randomness of digital
data. (One such standard is outlined
in the U.S. Federal Information
Processing Standards publication
140-2). An example of such a test is
the following: In a string of 1s and
0s, we count how many times the
two-digit patterns (0,0), (0,1), (1,0)
and (1,1) appear. We then compare
these numbers with the values
expected for an ideal, random
sequence. It is easy to calculate how
likely it is that the measured sets of
values differ from the expected ones,
so that we can decide whether or not
our quantum-jump data are random
according to the given protocol. We
are collecting continuous sequences
of data, tens of thousands of events

long, that can be used for these tests.

Quantum Computing

We are also beginning some of
the tasks that are prerequisites to
making a quantum logic gate with a
trapped ion. Perhaps the most critical
step is coherently driving transitions
between specific qubit states. In the
experiments we are considering, the
strontium S1/2 ground state corre-
sponds to the qubit state |0〉, whereas
the D5/2 excited state corresponds to
the |1〉 qubit state. The stable 674-
nanometer diode laser couples the
qubit states to each other and to
states of the ion’s quantized external
motion that would also be qubit
states (Monroe et al. 1995). 

The stability of the laser is one
of several parameters that can limit
the performance of a quantum com-

puter. If the laser frequency and phase
were constant, we could almost
always complete quantum logic oper-
ations perfectly. For example, starting
with the ion in the S1/2 state, we
could reliably create a specific super-
position of the S1/2 and D5/2 states:

(1)

However, if the phase or frequency
of the laser is not perfectly stable
while this operation is taking place,
the result of the operation may be, for
example,

(2)

In this case, the new wave function
has a small phase error. If this opera-
tion is repeated many times, the accu-
mulations of these small errors could
invalidate the results of a quantum
computation. Because every laser has
a nonzero linewidth (proportional to
the laser’s frequency), such errors are
inevitable. One way to reduce the
likelihood of introducing the errors is
to perform the logic operation quickly,
that is, faster than the typical time
scales of the frequency fluctuations 
of the laser, although it is easier to
perform a quantum-gate operation
slowly. Thus, it is critical that the
laser be very stable with its linewidth
as small as possible. 

We have measured our laser
linewidth using a procedure related 
to the quantum-jump experiment
described earlier. First, we turn off
the 422-nanometer light, letting 
the ion decay to the S1/2 state. Then
we illuminate the ion with a pulse 
of 674-nanometer laser light. (The
422-nanometer light remains off dur-
ing this step, because that light will
perturb the S1/2 state and broaden the
S1/2 ↔ D5/2 transition.) We then
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Figure 4. Measurement of the Laser Linewidth 
The plot shows data taken from the narrow sideband of the S1/2 ↔ D5/2 transition in
a single trapped 88Sr+ ion. The solid line is a Lorentzian line shape that is fitted to
the data. In one laser probe cycle, the atom starts in the S1/2 state. Next, the cooling
light is turned off while the 674-nm light is pulsed on for 0.001s. Then the cooling
light is turned on again, and we see if any 422-nm light is scattered into the detec-
tor. If not, then the 674-nm laser has successfully transferred the ion to the D5/2
state. This process is repeated 100 times for each laser frequency.



determine whether or not the laser
has driven the atom from the S1/2
to the D5/2 state by shining the 
422-nanometer light on the ion. 
We detect light scattered by the ion if
it is not in the D5/2 state, but only
background light (the small amount
of light scattered off the trap and 
vacuum chamber) if the ion is in the 
D5/2 state. Figure 4 shows the number
of times the 674-nanometer laser
transfers the ion to the D5/2 state as
the laser frequency is scanned over
one of the motional sidebands of the 
S1/2 ↔ D5/2 transition. The figure 
also shows the result of fitting a
Lorentzian-shaped curve to these
data. From the shape of the fitted 
curve and from a few key experimental
parameters, we can determine that the
laser linewidth is about 4 kilohertz or
less, which is about one percent of
one billionth of the absolute frequen-
cy of the laser light (445 terahertz).

This laser linewidth is sufficiently
narrow so that we can perform 
specific, coherent operations on qubit
states. However, to perform the oper-
ations needed for a quantum logic
gate, the ions must be cooled much
more than they are at present, so that
the quantum state of the ion can be
initialized to the ground state of its
motion. We are currently working
toward this goal and on further 
narrowing the linewidth of the 
674-nanometer laser. In addition, 
we are working on or anticipate per-
forming several other quantum-optics
experiments. The apparatus presented
here, along with ion traps in general,
can facilitate significant contributions
to the field of quantum information
and quantum computation. �
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No fundamental principle precludes the measurement of a single spin, and there-
fore the capability to make such a measurement simply depends on our ability
to develop a detection method of sufficient spatial and temporal resolution. 

The standard electron spin detection technique—electron spin resonance—is limited to
a macroscopic number of electron spins (1010 or more) (Farle 1998). A state-of-the-art
magnetic resonance force microscope has recently detected about a hundred fully
polarized electron spins (Bruland et al. 1998). We argue that scanning tunneling
microscopy offers a powerful technique to detect a single spin and propose the theoreti-
cal basis for the new spin-detection technique, which we call spin precession by 
scanning tunneling microscopy.

The capability to routinely detect and manipulate a single spin would be remarkably
useful, with applications ranging from the study of strongly correlated systems to 
nanotechnology and quantum information processing. For example, we could investigate
magnetism on the nanoscale in a strongly correlated system by detecting changes in the
spin behavior as the system enters the magnetically ordered state (Heinze et al. 2000).
We could also fully explore the magnetic properties of a single paramagnetic atom in the
Kondo regime (Manoharan et al. 2000). Magnetic properties of spin centers in supercon-
ductors are another area where a single spin plays an important role, since it can gener-
ate intragap impurity states (Salkola et al. 1997, Yazdani et al. 1997). With regard to
nanotechnology, the ability to manipulate a single spin could open the door to single-
spin-based information storage devices, whereas in the realm of quantum computing,
it could help bring to fruition several specific computing architectures (Kane 1998,
Loss and DiVincenzo 1998). 

Our theoretical investigation of spin precession–scanning tunneling microscopy has
in part been motivated by the experiments of Yshay Manassen et al. (1989), in which a
defect structure (an oxygen vacancy) in oxidized silicon was interrogated with a scan-
ning tunneling microscope (STM). The STM operated in the presence of an external
magnetic field, and a small alternating current (ac) signal in the power spectrum of the
tunneling current was detected at the spin’s precession, or Larmor, frequency. The ac
signal was spatially localized at distances of about 5–10 angstroms from the spin site.
The extreme localization of the signal and the linear scaling of its frequency with the
magnetic field prompted Manassen to attribute the detected ac signal to the Larmor pre-
cession of a single-spin site. Whereas that interpretation was somewhat controversial,
the later work by Manassen et al. (2000) and more recent work by Colm Durkan and
Mark Welland (2002) support the notion that STM can indeed sense a single spin. 

From a theoretical perspective, it was not clear how the spin could generate an 
ac component in the STM’s tunneling current. As outlined below, however, the precess-
ing spin causes an ac modulation of the surface density of states near the spin site,
provided a dc current flows through the surface. In fact, that current can be the tunneling
current that flows between the STM tip and the surface. Thus, the tunneling current,
which is proportional to the surface density of states, plays two roles in spin detection
by scanning tunneling microscopy: It provides a means to couple the precessing spin to
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the density of states and a means to detect the ac modulation of those states. The experi-
mental setup that we consider is shown in Figure 1. A general discussion of the princi-
ples underlying scanning tunneling microscopy can be found on page 303. 

Before analyzing the effect of the STM, consider a localized magnetic site with spin
S (spin 1/2), on the surface of a substrate. In the presence of a magnetic field, B, the
energy levels of the spin-up and spin-down states (denoted by E↑ and E↓, respectively)
are Zeeman-split. At a finite temperature, or as a result of an external excitation, the spin
may be driven into the mixed state characterized by the wave function 

|ψ(t)〉 = α(t) |↑〉 + β(t) |↓〉  , (1)

where 

α(t) = |α | exp(–iE↑t)  , and
β(t) = |β | exp(–iE↓t + iφ (t))  .

The phase φ (t) determines the spin coherence time τφ and is related to the spin relax-
ation time T2 measured by electron spin resonance.

In the state given by Equation (1), the spin, with an expectation value of 

(2)

will precess around a magnetic field line at the Larmor frequency ωL,

hωL = E↑ – E↓ = γB (3)

where γ is the gyromagnetic ratio. (See the box “Spin Manipulation with Magnetic
Resonance” on page 288.) In a magnetic field of 100 gauss, this frequency  is 280 mega-
hertz for a free electron. 

If we consider what happens on the surface, then the precession of the local moment
will be coupled to the orbital motion of electrons via the spin-orbit interaction. The
details of the spin-orbit coupling depend on the specific material. In general, however,
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I0 + δI(t) Figure 1. Experimental
Setup for Electron Spin
Precession by Scanning
Tunneling Microscopy
In the applied magnetic field B,
the spin of the magnetic atom
(for example, gadolinium,
shown in gold) is precessing
around the field line. The STM
tip is precisely positioned 
within a few angstroms of the
spin site. The dc tunneling 
current I0, between the STM tip
and the sample, can acquire 
an ac component, δI (t), that 
signals the presence of the 
precessing spin.



the interaction of the conduction electrons with the local impurity spin can be described 
by the Hamiltonian

H = H0 + J S•σ (0)  , (4)

where J is the strength of the exchange interaction between the local spin S, and the spin
density of the conduction electrons, σ(0) = σαβ cα

† (0) cβ(0), on the impurity site. Here,
cα

†(0), cβ(0) are the electron creation/destruction operators with spin α and β, respective-
ly, and σαβ = (σ x

αβ , σ y
αβ , σ z

αβ) is a vector of Pauli matrices. The unperturbed
Hamiltonian H0 describes the surface without the spin impurity. Based on symmetry, the
energy of the unperturbed surface states contains a spin-orbit part that is linear both in
the conduction-electrons’ spin, σ, and their momentum, k (Bychkov and Rashba 1984).

(5) 

where m* is the band mass of electrons in the substrate, n is a unit vector normal to the
surface, and γSO is a parameter that characterizes the strength of the surface spin-orbit
coupling. The problem specified by Equations (4) and (5) can be solved for each instan-
taneous value of the precessing spin S(t). The solution, however, does not lead to a 
time-dependent conduction-electron density of states N(r, t) because the effects of 
the precessing spin average to zero. In that case, the tunneling current would remain
constant. 

To extend the model, we account for the fact that the tunneling current injects elec-
trons into the sample, and those electrons can flow to the spin site. In the presence of a
current density j flowing through the surface, the equilibrium momentum distribution k
is shifted by an amount, k0 = jm∗/ne, where n is the carrier density and e is the electron
charge. This shift can be introduced into a Green’s function matrix for the conduction
electrons, Ĝ0(k,ω),

(6)

We expand the matrix in γSO relative to the Fermi energy. Then, to first order in both the
exchange coupling J and γSO, we obtain an S-dependent contribution to the density of
the surface states:

(7)

This correction depends on the distance from the spin center, r, through the Bessel func-
tion of the first kind, J0(x). The correction is time dependent in the presence of a mag-
netic field because the projection of S oscillates at the Larmor frequency. The magnitude
of the correction is proportional to the current density in the system (through k0). 

The total (ac plus dc) tunneling current I, between the STM tip and the sample is pro-
portional to the single-electron density of states in the substrate. Therefore, the 
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ac component δI(t), normalized to the tunneling current, can be estimated as

(8)

We have focused on the case in which an STM injects current into the system, but in
principle, the current can also be provided externally (through extra leads attached to the
substrate), and the ac current can be detected with some ultrasensitive current measure-
ment device. 

It is also important to note that the electron density of states N(r, t) is a scalar and
should be invariant under time reversal, whereas S is odd under time reversal. Hence,
δN(r, t) can depend only on the product of the spin vector with some other vector that is
odd under time reversal. In Equation (7), that vector is the current density, that is,
δN ~ [k0 × S]n. Another possibility is that the correction to the density of states depends
on the time derivative of the spin vector, that is, δN ∼ ∂tS(t). We have also found a
mechanism for this possibility. 

Our conjecture of how an STM can detect single spins is based on the ac modulation
of the density of surface states that results from a current-induced spin-orbit coupling to
the precessing local spin. The changing state density is observed as the ac component to
the tunneling current. �

Further Reading

Balatsky, A. V., and I. Martin. 2001. Theory of Single Spin Detection with STM. [Online]:
http://eprints.lanl.gov (cond-mat/0112407).

Bruland, K. J., W. M. Dougherty, J. L. Garbini, J. A. Sidles, and S. H. Chao. 1998. Force-Detected Magnetic
Resonance in a Field Gradient of 250 000 Tesla per Meter. Appl. Phys. Lett. 73 (21): 3159.

Bychkov, Y. A., and E. I. Rashba. 1984. Properties of a 2D Electron Gas with Lifted Spectral Degeneracy.
JETP Lett. 39 (2): 78.

Durkan, C., and M. E. Welland. 2002. Electronic Spin Detection in Molecules Using Scanning-Tunneling-
Microscopy-Assisted Electron-Spin Resonance. Appl. Phys. Lett. 80 (3): 458. 

Farle, M. 1998. Ferromagnetic Resonance of Ultrathin Metallic Layers. Rep. Prog. Phys. 61 (7): 755.
Heinze, S., M. Bode, A. Kubetzka, O. Pietzsch, X. Nie, S. Blugel, and R. Wiesendanger. 2000. Real-Space

Imaging of Two-Dimensional Antiferromagnetism on the Atomic Scale. Science 288 (5472): 1805. 
Kane, B. E. 1998. A Silicon-Based Nuclear Spin Quantum Computer. Nature 393: 133.
Loss, D., and D. P. DiVincenzo. 1998. Quantum Computation with Quantum Dots. Phys. Rev. A 57: 120.
Manassen, Y., I. Mukhopadhyay, and N. R. Rao. 2000. Electron-Spin-Resonance STM on Iron Atoms in

Silicon. Phys. Rev. B 61 (23): 16223. 
Manassen, Y., R. J. Hamers, J. E. Demuth, and A. J. Castellano Jr. 1989. Direct Observation of the Precession

of Individual Paramagnetic Spins on Oxidized Silicon Surfaces. Phys. Rev. Lett. 62: 2531.
Manoharan, H. C., C. P. Lutz, and D. M. Eigler. 2000. Quantum Mirages Formed by Coherent Projection of

Electronic Structure. Nature 403: 512.
Salkola, M. I., A. V. Balatsky, and J. R. Schrieffer. 1997. Spectral Properties of Quasiparticle Excitations

Induced by Magnetic Moments in Superconductors. Phys. Rev. B 55: 12648. 
Wiesendanger, R., H.-J. Güntherodt, G. Güntherodt, R. J. Gambino, and R. Ruf. 1990. Observation of Vacuum

Tunneling of Spin-Polarized Electrons with the Scanning Tunneling Microscope. Phys. Rev. Lett. 65: 247.
Yazdani, A., B. A. Jones, C. P. Lutz, M. F. Crommie, and D. M. Eigler. 1997. Probing the Local Effects of

Magnetic Impurities on Superconductivity. Science 275 (5307): 1767.

δ δI t

I

N t

N

( ) = ( )
.

Number 27  2002  Los Alamos Science  187

Theory of Single-Spin Detection

Alexander Balatsky received his
Ph.D. in 1987 from the Landau
Institute for Theoretical Physics,
where he then
worked as a
researcher
until 1989.
From 1989 to
1991, he was
at the
University of
Illinois at
Urbana-Champaign,
where he became a visiting resident
assistant professor in 1990. In 1991,
he joined Los Alamos National
Laboratory as a J. R. Oppenheimer
Fellow and is currently a technical
staff member in the Theoretical
Division.

Ivar Martin is a technical staff
member in the Theoretical Division
at Los Alamos National Laboratory.
He received
his Ph.D. from
the University
of Illinois at
Urbana-
Champaign in
1999. His
research inter-
ests include
the theory of
strongly correlated systems, devel-
opment of novel local probes, and
the theory of quantum measurement
and computation. 



188 Los Alamos Science Number 27  2002

Introduction to 
Quantum Error Correction

Emanuel Knill, Raymond Laflamme, Alexei Ashikhmin, Howard N. Barnum,
Lorenza Viola, and Wojciech H. Zurek



When physically realized, quantum information processing (QIP) can be used
to solve problems in physics simulation, cryptanalysis, and secure communi-
cation for which there are no known efficient solutions based on classical

information processing. Numerous proposals exist for building the devices required for
QIP by using systems that exhibit quantum properties. Examples include nuclear spins
in molecules, electron spins or charge in quantum dots, collective states of superconduc-
tors, and photons (Braunstein and Lo 2000). In all these cases, there are well-established
physical models that, under ideal conditions, allow for exact realizations of quantum
information and its manipulation. However, real physical systems never behave exactly
like the ideal models. The main problems are environmental noise, which is due to
incomplete isolation of the system from the rest of the world, and control errors, which
are caused by calibration errors and random fluctuations in control parameters. Attempts
to reduce the effects of these errors are confronted by the conflicting needs of being 
able to control and reliably measure the quantum systems. These needs require strong
interactions with control devices and systems that are sufficiently well isolated to main-
tain coherence, the subtle relationship between the phases in a quantum superposition.
The fact that quantum effects rarely persist on macroscopic scales suggests that meeting
these needs requires considerable outside intervention. 

Soon after Peter Shor published the efficient quantum factoring algorithm with its
applications to breaking commonly used public-key cryptosystems, Andrew Steane
(1996) and Shor (1995) gave the first constructions of quantum error-correcting codes.
These codes make it possible to store quantum information so that one can reverse the
effects of the most likely errors. By demonstrating that quantum information can exist in
protected parts of the state space, they showed that, in principle, it is possible to protect
against environmental noise when storing or transmitting information. Stimulated by
these results and in order to solve errors happening during computation with quantum
information, researchers initiated a series of investigations to determine whether it 
was possible to quantum-compute in a fault-tolerant manner. The outcome of these
investigations was positive and culminated in what are now known as accuracy threshold
theorems (Gottesman 1996, Calderbank et al. 1997, Calderbank et al. 1998, Shor 1996,
Kitaev 1997, Knill and Laflamme 1996, Aharonov and Ben-Or 1996, Aharonov and
Ben-Or 1999, Knill et al. 1998a, Knill et al. 1998b, Gottesman 1998, Preskill 1998).
According to these theorems, if the effects of all errors are sufficiently small per 
quantum bit (qubit) and computation step, then it is possible to process quantum infor-
mation arbitrarily accurately with reasonable resource overheads. The requirement on
errors is quantified by a maximum tolerable error rate called the threshold. The thresh-
old value depends strongly on the details of the assumed error model. All threshold 
theorems require that errors at different times and locations be independent and that 
the basic computational operations can be applied in parallel. Although the proven
thresholds are well out of the range of today’s devices, there are signs that, in practice,
fault-tolerant quantum computation may be realizable. 

In retrospect, advances in quantum error correction and fault-tolerant computation
were made possible by the realization that accurate computation does not require the
state of the physical devices supporting the computation to be perfect. In classical 
information processing, this observation is so obvious that it is often forgotten: No two
letters “e” on a written page are physically identical, and the number of electrons used
to store a bit in the computer’s memory varies substantially. Nevertheless, we have no
difficulty in accurately identifying the desired letter or state. A crucial conceptual 
difficulty with quantum information is that, by its very nature, it cannot be identified 
by being “looked” at. As a result, the sense in which quantum information can be 
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accurately stored in a noisy system needs to be defined without reference to an observer.
There are two ways to accomplish this task. The first is to define stored information to
be the information that can, in principle, be extracted by a quantum decoding procedure. 
The second is to explicitly define “subsystems” (particle-like aspects of the quantum
device) that contain the desired information. The first approach is a natural generaliza-
tion of the usual interpretations of classical error-correction methods, whereas the sec-
ond is motivated by a way of characterizing quantum particles.

In this article, we motivate and explain the decoding and subsystems view of 
quantum error correction. We explain how quantum noise in QIP can be described and
classified and summarize the requirements that need to be satisfied for fault tolerance.
Considering the capabilities of currently available quantum technology, the require-
ments appear daunting. But the idea of subsystems shows that these requirements can
be met in many different, and often unexpected, ways. 

Our article is structured as follows: The basic concepts are introduced by example,
first for classical and then for quantum codes. We then show how the concepts are
defined in general. Following a discussion of error models and analysis, we state and
explain the necessary and sufficient conditions for detectability of errors and cor-
rectability of error sets. That section is followed by a brief introduction to two of the
most important methods for constructing error-correcting codes and subsystems. For a
basic overview, it suffices to read the beginnings of these more-technical sections. 
The principles of fault-tolerant quantum computation are outlined in the last section. 

Concepts and Examples

Communication is the prototypical application of error correction methods. 
To communicate, a sender needs to convey information to a receiver over a noisy com-
munication channel. Such a channel can be thought of as a means of transmitting an 
information-carrying physical system from one place to another. During transmission,
the physical system is subject to disturbances that can affect the information carried. 
To use a communication channel, the sender needs to encode the information to be
transmitted in the physical system. After transmission, the receiver decodes the informa-
tion. The procedure is shown in Figure 1.

Protecting stored information is another important application of error correction
methods. In this case, the user encodes the information in a storage system and retrieves
it later. Provided that there is no communication from the receiver to the sender, any
error correction method applicable to communication is also applicable to storage and
vice versa. In a later section (“Fault-Tolerant Quantum Communication and
Computation” on page 217), we discuss the problem of fault-tolerant computation,

Figure 1. Typical
Application of Error
Correction Methods 
The three main steps required
for communication are shown
in this figure: Information is
first encoded in a physical
system, then transmitted over
the noisy communication
channel, and finally decoded.
The combination of encoding
and decoding is chosen so
that errors have no effect on
the transmitted information.



which requires enhancing error correction methods in order to enable applying opera-
tions to encoded information without losing protection against errors. 

To illustrate the different features of error correction methods, we consider three
examples. We begin by describing them for classical information, but in each case,
there is a quantum analogue that will be introduced later. 

Trivial Two-Bit Example. Consider a physical system con-
sisting of two bits with state space {��, ��, ��, ��}. We use the
convention that state symbols for physical systems subject to
errors are in gray. States changed by errors are shown in red.1 In
this example, the system is subject to errors that flip (apply the
not operator to) the first bit with probability .5. We wish to safe-
ly store one bit of information. To this end, we store the infor-
mation in the second physical bit because this bit is unaffected
by the errors (see Figure 2).

As suggested by the usage examples in Figure 1, one can
encode one bit of information in the physical system by the map
that takes o → �� and � → ��. This means that the states o and
� of an ideal bit are represented by the states �� and �� of the
noisy physical system, respectively. 

To decode the information, one can extract the second bit by
the following map:

(1)

This procedure ensures that the encoded bit is recovered by the
decoding regardless of the error. There are other combinations of
encoding and decoding that work. For example, in the encoding,
we could swap the meaning of � and � by using the map � → ��
and � → ��. The new decoding procedure adds a bit flip to the
one shown above. The only difference between this combination
of encoding/decoding and the previous one lies in the way in
which the information is represented in the range of the encod-
ing. This range consists of the two states �� and �� and is called
the code. The states in the code are called code words. 

Although trivial, the example just given is typical of ways for dealing with errors. 
That is, there is always a way of viewing the physical system as a pair of abstract sys-
tems: The first member of the pair experiences the errors, and the second carries the
information to be protected. The two abstract systems are called subsystems of the physi-
cal system and are usually not identifiable with any of the system’s physical components.
The first is the syndrome subsystem, and the second is the information-carrying subsys-
tem. Encoding consists of initializing the first system and storing the information in the
second. Decoding is accomplished by extraction of the second system. In the example,
the two subsystems are readily identified as the two physical bits that make up the physi-
cal system. The first is the syndrome subsystem and is initialized to � by the encoding.
The second carries the encoded information.

�� → �
�� → �
�� → �
�� → �
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Probability = .5

Physical System and Error Model

Usage Examples

Store � in the second bit

Store � in the second bit

Probability = .5

Figure 2. A Simple Error Model
Errors affect only the first bit of a physical two-bit 
system. All joint states of the two bits are affected by
errors. For example, the joint state ���� is changed by the
error to ����. Nevertheless, the value of the information
represented in the second physical bit is unchanged.

1 These graphical conventions are not crucial for understanding what the symbols mean and are
intended for emphasis only. 



The Repetition Code. The next example is a special case of the main problem of
classical error correction and occurs in typical communication settings and in computer
memories. Let the physical system consist of three bits. The effect of the errors is to
independently flip each bit with probability p, which we take to be p = .25. The repeti-
tion code results from triplicating the information to be protected. An encoding is given
by the map o → ���, � → ���. The repetition code is the set {ooo, ���}, which is the
range of the encoding. The information can be decoded with majority logic: If two out
of three bits are �, the output is �; otherwise, the output is �. 

How well does this encoding/decoding combination work for protecting one bit 
of information against the errors? The decoding fails to extract the bit of information 
correctly if two or three of the bits were flipped by the error. We can calculate the 
probability of incorrect decoding as follows: The probability of a given pair of bits 
having flipped is .252 ∗ .75. There are three different pairs. The probability of 
three bits having flipped is .253. Thus, the probability of error in the encoded bit is 
3 ⋅ .252 ∗ .75 +.253 = 0.15625. This is an improvement over .25, which is the probability
that the information represented in one of the three physical bits is corrupted by error. 

To see that one can interpret this example by viewing the physical system as a pair 
of subsystems, it suffices to identify the physical system’s states with the states of a 
suitable pair. The following shows such a subsystem identification:

(2)

The left side consists of the 8 states of the physical system, which are the possible
states for the three physical bits making up the system. The right side shows the corre-
sponding states for the subsystem pair. The syndrome subsystem is a two-bit subsystem,
whose states are shown first. The syndrome subsystem’s states are called syndromes.
After the “·” symbol are the states of the information-carrying one-bit subsystem. 

In the subsystem identification above, the repetition code consists of the two states
for which the syndrome is ��. That is, the code states ��� and ��� correspond to the
states �� � � and �� � � of the subsystem pair. For a state in this code, single-bit flips do
not change the information-carrying bit, only the syndrome. For example, a bit flip of
the second bit changes ��� to ���, which is identified with �� ⋅ �. The syndrome has
changed from �� to ��. Similarly, this error changes ��� to ��� ↔ �� ⋅ �. The following
diagram shows these effects :

(3)
��� ↔ �� ⋅ � ��� ↔ �� ⋅ �

��� ↔ �� ⋅ � ��� ↔ �� ⋅ �
↓ ↓

��� ↔ �� ⋅ �
��� ↔  ��  ⋅ �
��� ↔ ��  ⋅ �
��� ↔ ��  ⋅ �
��� ↔ ��  ⋅  �
��� ↔ ��  ⋅  �
��� ↔  ��  ⋅  �
��� ↔ ��  ⋅ �

192 Los Alamos Science Number 27  2002

Introduction to Quantum Error Correction



Note that the syndrome change is the same. In general, with this subsystem identifica-
tion, we can infer from the syndrome which single bit was flipped on an encoded state. 

Errors usually act cumulatively over time. For the repetition code, this is a problem
in the sense that it takes only a few actions of the above error model for
the two- and three-bit errors to overwhelm the encoded information.
One way to delay the loss of information is to decode and reencode 
sufficiently often. Instead of explicitly decoding and reencoding,
the subsystem identification can be used directly for the same effect,
namely, that of resetting the syndrome subsystem’s state to ��. For
example, if the state is �� ⋅ �, it needs to be reset to �� ⋅ �. Therefore,
using the subsystem identification, resetting requires changing the state
��� to ���. It can be checked that, in every case, what is required is to
set all bits of the physical system to the majority of the bits. After the
syndrome subsystem has been reset, the information is again protected
against the next one-bit error. 

A Code for a Cyclic System. We next consider a physical system 
that does not consist of bits. This system has seven states symbolized 
by 0, 1, 2, 3, 4, 5, and 6. Let s1 be the right-circular shift operator
defined by s1 (l) = l +1 for 0 ≤ l ≤ 5 and s1 (6) = 0. Define s0 = 11
(the identity operator),

(4)

and s–k = sk
–1 (left-circular shift by k). The model can be visualized as a pointer on a

dial with seven positions, as shown in Figure 3. Suppose that the errors consist of apply-
ing sk with probability qe–k2

, where q = 0.5641 is chosen so that the probabilities sum to
1, that is ∑k

∞
= –∞ qe–k2

= 1. Thus, s0 has probability 0.5641, and each of s–1 and s1 has
probability 0.2075. These are the main errors that we need to protect against.
Continuous versions of this error model in the context of communication channels are
known as Gaussian channels. 

One bit can be encoded in this physical system by the map � → 1, � → 4. 
To decode with protection against s0, s–1, and s1, use the mapping

(5)

If state 6 is encountered, we know that an error involving a shift of at least 2 (left or
right) occurred, but there is no reasonable way of decoding it to the state of a bit. This
means that the error is detected, but we cannot correct it. Error detection can be used 
by the receiver to ask for information to be sent again. The probability of correctly
decoding with this code is at least 0.9792, which is the probability that the error caused
a shift of at most 1. 

0 → �
1 → �
2 → �
3 →  �
4 →  �
5 →  �
6 →  fail

s s sk = 1 1

 

 ,...{
k times
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Figure 3. A Seven-State
Cyclic System
The position of the pointer on
the seven-position dial deter-
mines the state of the system.
With the pointer in the position
shown, the state is 1. Errors
have the effect of rotating the
pointer clockwise or counter-
clockwise. The effect of s1 is to
rotate the pointer clockwise, as
shown by the red arrow.



As before, a pair of syndrome and information-carrying subsystems can be identified
as being used by the encoding and decoding procedures. It suffices to correctly identify
the syndrome states, which we name –�, �, and �, because they indicate which of the
likeliest shifts happened. The resulting subsystem identification is

(6)

A new feature of this subsystem identification is that it is incomplete: Only a subset of
the state space is identified. In this case, the complement can be used for error detection. 

Like the repetition code, this code can be used in a setting where the errors happen
repeatedly. Again, it suffices to reset the syndrome subsystem, in this case to �, to keep the
encoded information protected. After the syndrome subsystem has been reset, a subse-
quent s1 or s–1 error affects only the syndrome. 

Principles of Error Correction

When considering the problem of limiting the effects of errors in information pro-
cessing, the first task is to establish the properties of the physical systems that are avail-
able for representing and computing with information. Thus, it is necessary to learn the
following: the physical system to be used, in particular the structure of its state space;
the available means for controlling this system; the type of information to be processed;
and the nature of the errors, that is, the error model. With this information, the
approaches used to correct errors in the three examples provided in the previous section
involve the following:

1. Determine a code, which is a subspace of the physical system, that can represent
the information to be processed. 
2. (a) Identify a decoding procedure that can restore the information represented in
the code after any one of the most likely errors occurred or (b) determine a pair of
syndrome and information-carrying subsystems such that the code corresponds to 
a “base” state of the syndrome subsystem and the primary errors act only on the 
syndrome. 
3. Analyze the error behavior of the code and subsystem. 

The tasks of determining a code and identifying decoding procedures or subsystems
are closely related. As a result, the following questions are at the foundation of the 
theory of error correction: What properties must a code satisfy so that it can be used 
to protect well against a given error model? How does one obtain the decoding or 
subsystem identification that achieves this protection? In many cases, the answers 
can be based on choosing a fixed set of error operators that represents well the most
likely errors and then determining whether these errors can be protected against 
without any loss of information. Once an error set is fixed, determining whether it is
correctable can be cast in terms of the idea of detectable errors. This idea works equally
well for both classical and quantum information. We introduce it using classical 
information concepts. 

0 ↔ –� ⋅ �
1 ↔  � ⋅ �
2 ↔   � ⋅ �
3 ↔ –� ⋅ �
4 ↔  � ⋅ �
5 ↔   � ⋅ �
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Error Detection. Error detection was used in the cyclic-system example to reject a
state that could not be properly decoded. In the communication setting, error control
methods based on error detection alone work as follows: The encoded information is
transmitted. The receiver checks whether the state is still in the code, that is, whether it
could have been obtained by encoding. If not, the result is rejected. The sender can be
informed of the failure so that the information can be retransmitted. Given a set of error
operators that need to be protected against, the scheme is successful if, for each error
operator, either the information is unchanged or the error is detected. Thus, we can say
that an operator E is detectable by a code if, for each state x in the code, either Ex = x or
Ex is not in the code (see Figure 4). 

What errors are detectable by the codes in the examples? The code in the first exam-
ple consists of �� and ��. Every operator that affects only the first bit is therefore
detectable. In particular, all the operators in the error model are detectable. In the second
example, the code consists of the states ��� and ���. The identity operator has no effect
and is therefore detectable. Any flips of exactly one or two bits are detectable because
the states in the code are changed to states outside the code. The error that flips all bits is
not detectable because it preserves the code but changes the states in the code. With the
code for the cyclic system, shifts by –2, –1, 0, 1, and 2 are detectable but not shifts by 3.

To conclude the section, we state a characterization of detectability, which has a natu-
ral generalization to the case of quantum information. 

Theorem 1. E is detectable by a code if and only if for all x ≠ y in the code, Ex ≠ y. 

From Error Detection to Error Correction. Given a code C and a set of error oper-
ators E = {11 = E0, El, E2…}, is it possible to determine whether a decoding procedure
or subsystem exists such that E is correctable (by C), that is, such that the errors in E
do not affect the encoded information? As explained below, the answer is yes, and the
solution is to check the condition in the following theorem:

Theorem 2. E is correctable by C if and only if, for all x ≠ y in the code and all i and
j, it is true that Eix ≠ Ejy. 

Observe that the notion of correctability depends on all the errors in the set under con-
sideration and, unlike detectability, cannot be applied to individual errors. 

To see that the condition for correctability in Theorem 2 is necessary, suppose that
for some x ≠ y in the code and some i and j, we have z = Eix = Ejy. If the state z is
obtained after an unknown error in E, then it is not possible to determine whether the
original code word was x or y because we cannot tell whether Ei or Ej occurred. 

To see that the condition for correctability in Theorem 2 is sufficient, we assume it
and construct a decoding method z → dec(z). Suppose that after an unknown error
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Figure 4. Typical
Detectable and
Undetectable Code Errors
Three examples are shown.
In each, the code is represented
by a brown oval containing
three code words (green
points). The effect of the error
operator is shown as arrows.
(a) The error does not change
the code words and is therefore
considered detectable.
(b) The error maps the code
words outside the code so that
it is detected. (c) One code word
is mapped to another, as shown
by the red arrow. Finding that 
a received word is still in the
code does not guarantee that it
was the originally encoded
word. The error is therefore 
not detectable.

(a) (b) (c)



occurred, the state z is obtained. There can be one and only one x in the code for which
some Ei(z) ∈ E satisfies the condition that Ei(z)x = z. Thus, x must be the original code
word, and we can decode z by defining x = dec(z). Note that it is possible for two errors
to have the same effect on some code words. A subsystem identification for this decod-
ing is given by z ↔ i(z) ⋅ dec(z), where the syndrome subsystem’s state space consists of
error operator indices i(z) and the information-carrying system’s consists of the code
words dec(z) returned by the decoding. The subsystem identification thus constructed is
not necessarily onto the state space of the subsystem pair. That is, for different code
words x, the set of i(z) such that dec(z) = x can vary and need not be all the error
indices. As we will show, the subsystem identification is onto the state space of the sub-
system pair in the case of quantum information. It is instructive to check that, when
applied to the examples, this subsystem construction does give a version of the subsys-
tem identifications provided earlier.

It is possible to relate the condition for correctability of an error set to detectability.
For simplicity, assume that each Ei is invertible. (This assumption is satisfied by our
examples but not by error operators such as “reset bit one to �.”) In this case, the cor-
rectability condition is equivalent to the statement that all products Ej

–1 Ei are
detectable. To see the equivalence, first suppose that some Ej

–1 Ei is not detectable.
Then, there are x ≠ y in the code such that Ej

–1 Ei x = y. Consequently, Eix = Ejy, and
the error set is not correctable. This argument can be reversed to complete the proof of
equivalence. 

If the assumption that the errors are invertible does not hold, the relationship between
detectability and correctability becomes more complicated, requiring a generalization 
of the inverse operation. This generalization is simpler in the quantum setting. 

Quantum Error Correction

The principles of error correction outlined before apply to the quantum setting as
readily as to the classical setting. The main difference is that the physical system to be
used for representing and processing information behaves quantum mechanically and
the type of information is quantum. The question of how classical information can be
protected in quantum systems is also interesting but will not be discussed here. We illus-
trate the principles of quantum error correction by considering quantum versions of 
the three examples given in “Concepts and Examples” and then add a uniquely quantum
example with potentially practical applications in, for example, quantum dot technolo-
gies. For an explanation of the basic quantum-information concepts and conventions,
see the article “Quantum Information Processing” on page 2.

Trivial Two-Qubit Example. A quantum version of the two-bit example from the 
previous section consists of two physical qubits, where the errors randomly apply the
identity or one of the Pauli operators to the first qubit. The Pauli operators are defined by

(7)  ,
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Explicitly, the errors have the effect

(8)

where the superscripts in parentheses specify the qubit that an operator acts on. This error model is
called completely depolarizing on qubit 1. Obviously, a one-qubit state can be stored in the second
physical qubit without being affected by the errors. An encoding operation that implements this
observation is

(9)

which realizes an ideal qubit as a two-dimensional subspace of the physical qubits. This subspace is
the quantum code for this encoding. To decode, one can discard physical qubit 1 and return qubit 2,
which is considered a natural subsystem of the physical system. In this case, the identification of
syndrome and information-carrying subsystems is the obvious one associated with the two physical
qubits. 

Quantum Repetition Code. The repetition code can be used to protect quantum information 
in the presence of a restricted error model. Let the physical system consist of three qubits. Errors act
by independently applying, to each qubit, the flip operator σx with probability .25. The classical
code can be made into a quantum code by the superposition principle. Encoding one qubit is 
accomplished by

(10)

The associated quantum code is the range of the encoding, that is, the two-dimensional subspace
spanned by the encoded states |���〉 and |���〉. 

As in the classical case, decoding is accomplished by majority logic. However, it must be imple-
mented carefully to avoid destroying quantum coherence in the stored information. One way to do
that is to use only unitary operations to transfer the stored information to the output qubit. Figure 5
shows a quantum network that accomplishes this task. 

As shown, the decoding network establishes an identification between the three physical qubits
and a pair of subsystems consisting of two qubits representing the syndrome subsystem and 
one qubit for the information-carrying subsystem. On the left side of the correspondence, the 
information-carrying subsystem is not identifiable with any one (or two) of the physical qubits.
Nevertheless, it exists there through the identification. 

To obtain a network for encoding, we reverse the decoding network and initialize qubits 2 and 3
in the state |��〉. The initialization renders the Toffoli gate unnecessary. The complete system with a
typical error is shown in Figure 6.

α β� �

|ψ ψ〉 → |�〉1 | 〉2  ,

Probability

Probability

Probability

Probability

,
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As in the case of the classical repetition code, we can protect against cumulative
errors without explicitly decoding and then reencoding, which would cause a temporary
loss of protection. Instead, one can find a means for directly resetting the syndrome sub-
system to |��〉 (thus returning the information to the code) before the errors happen
again. After resetting in this way, the errors in the correctable set have no effect on the
encoded information because they act only on the syndrome subsystem. 

Part of the task of designing error-correcting systems is to determine how well the
system performs. An important performance measure is the probability of error. In 
quantum systems, the probability of error is intuitively interpreted as the maximum
probability with which we can see a result different from the expected one in any meas-
urement. Specifically, to determine the error, one compares the output |ψo〉 of the system
with the input |ψ〉. An upper bound is obtained if the output is written as a combination
of the input state and an error state. For quantum information, combinations are linear
combinations (that is, superpositions). Thus |ψo〉 = γ |ψ〉 + |e〉 (see Figure 7). The
probability of error is bounded by ε = ||e〉|2 (which we call an error estimate). In general,
there are many different ways of writing the output as a combination of an acceptable
state and an error term. One attempts to choose the combination that minimizes the error
estimate. This choice yields the number ε for which 1 – ε is called fidelity. A fidelity of
1 means that the output is the same (up to a phase factor) as the input. 

To illustrate error analysis, we calculate the error for the repetition code example for
the two initial states |�〉 and (1/√2)(|�〉 + |�〉). 
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Figure 5. Majority Logic Decoding into the Output Qubit 3
The effect of the quantum network on the basis states is shown. The top half shows the
states with majority ��. The decoded qubit is separated in the last step. The conventions for
illustrating quantum networks are explained in the article “Quantum Information Processing”
on page 2.
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DecodeEncode

0

0

Z

Z

Figure 6. Networks for the Quantum Repetition Code with a Typical Error 
The error that occurred can be determined from the state of the syndrome subsystem,
which consists of the top two qubits. The encoding is shown as the reverse of the decoding,
starting with an initialized syndrome subsystem. When the decoding is reversed to yield 
the encoding, there is an initial Toffoli gate (shown in gray). Because of the initialization,
this gate has no effect and is therefore omitted in an implementation.

ψo

γ ψ

e

Figure 7. Error Estimate 
Any decomposition of the output state |ψo〉 into a “good” state γ |ψ〉 and an (unnormalized)
error term |e〉 gives an estimate ε = ||e〉|2. For pure states, the optimum estimate is obtained
when the error term is orthogonal to the input state. To obtain an error estimate for mixtures,
one can use any representation of the state as a probabilistic combination of pure states and
calculate the probabilistic sum of the pure-state errors.
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The final state is a mixture consisting of four correctly decoded components and four
incorrectly decoded ones. The probability of each state in the mixture is shown before
the colon. The incorrectly decoded information is orthogonal to the encoded informa-
tion, and its probability is 0.1563, an improvement over the one-qubit error probability
of 0.25. The second state behaves quite differently:

(14)

(15)

(16)

Not all error events have been shown, but in each case it can be seen that the state is
decoded correctly, so the error is 0. This shows that the error probability can depend 
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significantly on the initial state. To remove this dependence and give a state independent
error quantity, one can use the worst-case, the average, or the entanglement error. See
the section “Quantum Error Analysis” on page 209. 

Quantum Code for a Cyclic System. The shift operators introduced earlier act as
permutations of the seven states of the cyclic system. They can therefore be extended to
unitary operators on a seven-state cyclic quantum system with logical basis |0〉, |1〉, |2〉,
|3〉, |4〉, |5〉, and |6〉. The error model introduced earlier makes sense here without modifi-
cation, as does the encoding. The subsystem identification now takes the six-dimension-
al subspace spanned by |0〉,.... |5〉 to a pair consisting of a three-state system with basis
|–1〉, |0〉, |1〉 and a qubit. The identification of Equation (6) extends linearly to a unitary
subsystem identification. The procedure for decoding is modified as follows: First, a
measurement determines whether the state is in the six-dimensional subspace or not. If
it is, the identification is used to extract the qubit. Here is an outline of what happens
when the state (1/√2)(|�〉 + |�〉) is encoded:

(17)

(18)

(19)

(20)

(21)

A “good” state was separated from the output in the case that is shown. The leftover
error term has probability amplitude .0005 ∗ ((1/2)2 + (1/2)2) = .00025, which 
contributes to the total error (not shown). 

Three Quantum Spin-1/2 Particles. Quantum physics provides a rich source of 
systems with many opportunities for representing and protecting quantum information.
Sometimes, it is possible to encode information in such a way that it is protected from
the errors indefinitely, without intervention. An example is the trivial two-qubit system
discussed before. Whenever error protection without intervention is possible, there is an
information-carrying subsystem such that errors act only on the associated syndrome
subsystem regardless of the current state. An information-carrying subsystem with this
property is called “noiseless.” A physically motivated example of a one-qubit noiseless
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subsystem can be found in three spin-1/2 particles with errors due to random 
fluctuations in an external field. 

A spin-1/2 particle’s state space is spanned by two states, |↑〉 and |↓〉. Intuitively,
these states correspond to the spin pointing “up” (|↑〉) or “down” (|↓〉) in some chosen
reference frame. The state space is therefore the same as that of a qubit, and we can
make the identifications |↑〉 ↔ |�〉 and |↓〉 ↔ |�〉. An external field causes the spin to
rotate according to an evolution of the form

(22)

The vector u = (ux, uy, uz) characterizes the direction of the field and the strength of the
spin’s interaction with the field. This situation arises, for example, in nuclear magnetic
resonance with spin-1/2 nuclei, where the fields are magnetic fields (see the article
“NMR and Quantum Information Processing” on page 226).

Now consider the physical system composed of three spin-1/2 particles with errors
acting as identical rotations of the three particles. Such errors occur if they are due to a
uniform external field that fluctuates randomly in direction and strength. The evolution
caused by a uniform field is given by

(23)

with Ju = (σu
(1) + σu

(2) + σu
(3))/2 for u = x, y, and z. We can exhibit the error operators

arising from a uniform field in a compact form by defining J = (Jx, Jy, Jz) and 
v = (ux, uy, uz)t. Then the error operators are given by E(v) = e–iv⋅J, where the dot 
product in the exponent is calculated like the standard vector dot product. 

For a one-qubit noiseless subsystem, the key property of the error model is that the
errors are symmetric under any permutation of the three particles. A permutation of the
particles acts on the particles’ state space by permuting the labels in the logical states.
For example, the permutation π that swaps the first two particles acts on logical states as

(24)

To say that the errors are symmetric under particle permutations means that each 
error E satisfies π–1Eπ = E, or equivalently, Eπ = πE (E commutes with π). To see that
this condition is satisfied, write

π a b c a b c b a c
1 2 3 2 1 3 1 2 3

= =  .
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(25)

If π permutes particle a to particle b, then π–1σu
(a)π = σu

(b). It follows that π–1Jπ = J.
This expression shows that the errors commute with the particle permutations and there-
fore cannot distinguish between the particles. An error model satisfying this property is
called a collective error model. 

If a noiseless subsystem exists, then learning the symmetries of the error model suffices
for constructing the subsystem. This procedure is explained later, in “Conserved
Quantities, Symmetries, and Noiseless Subsystems.” For the three spin-1/2 system, the
procedure results in a one-qubit noiseless subsystem protected from all collective errors.
We first exhibit the subsystem identification and then discuss its properties to explain why
it is noiseless. As in the case of the seven-state cyclic system, the identification involves a
proper subspace of the physical system’s state space. The subsystem identification
involves a four-dimensional subspace and is defined by the following correspondence:

(26)

The state labels for the syndrome subsystem (before the dot in the expressions on the
right side) identify it as a spin-1/2 subsystem. In particular, it responds to the errors
caused by uniform fields in the same way as the physical spin-1/2 particles. This behav-
ior is caused by 2Ju acting as the u-Pauli operator on the syndrome subsystem. 
To confirm this property, we apply 2Ju to the logical states of Equation (26) for u = z, x.
The property for u = y then follows because iσy = σzσx. Consider 2Jz. Each of the four
states shown in Equation (26) is an eigenstate of 2Jz. For example, the physical state 
for |↑〉 ⋅ |o〉 is a superposition of states with two spins up (↑) and one spin down (↓). 
The eigenvalue of such a state with respect to 2Jz is the difference ∆ between the num-
ber of spins that are up and down. Thus, 2Jz|↑〉 ⋅ |�〉 = |↑〉 ⋅ |�〉. The difference is also
∆ = 1 for |↑〉 ⋅ |�〉 and ∆ = –1 for |↓〉 ⋅ |�〉 and |↓〉 ⋅ |�〉. Therefore, 2Jz acts as the z-Pauli 
operator on the syndrome subsystem. To confirm this behavior for 2Jx, we compute
2Jx|↑〉 ⋅ |�〉. 
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(27)

Similarly, one can check that, for the other logical states, the effect of 2Jx is to flip the
orientation of the syndrome spin. That the subsystem identified in Equation (26) is
noiseless now follows from the fact that the errors E(v) are exponentials of sums of
the syndrome spin operators Ju. The errors therefore act as the identity on the infor-
mation-carrying subsystem. 

The noiseless qubit supported by three spin-1/2 particles with collective errors is
another example in which the subsystem identification does not involve the whole
state space of the system. In this case, the errors of the error model cannot remove
amplitude from the subspace. As a result, if we detect an error, that is, if we find that
the system’s state is in the orthogonal complement of the subspace of the subsystem
identification, we can deduce that either the error model is inadequate or we intro-
duced errors in the manipulations required for transferring information to the 
noiseless qubit. 

The noiseless subsystem of three spin-1/2 particles can be physically motivated by
an analysis of quantum spin numbers. This analysis is outlined in the box on the
opposite page. 

204 Los Alamos Science Number 27  2002

Introduction to Quantum Error Correction

                 

    

    

                    

    

     

       

         

                    

                  

    

  



Number 27  2002  Los Alamos Science  205

Introduction to Quantum Error Correction

Noiseless qubit

Spin 1/2

Spin 3/2

Beam splitter

The left side shows the three particles with errors
caused by fluctuations in a uniform magnetic field
depicted by a noisy coil. The spin along direction u
(u = x, y, z) can be measured, and its expectation is
given by 〈ψ|Ju |ψ〉, where |ψ〉 is the quantum state of
the particles and Ju is the total spin observable along
the u-axis given by the half sum of the u-Pauli matri-
ces of the particles as defined in the text. The squared
magnitude of the total spin is given by the expecta-
tion of the observable J2 = J ⋅ J = Jx

2 + Jy
2 + Jz

2.
The observable J2 commutes with the Ju and there-
fore also with the errors E(v) = e–iv⋅J caused by uni-
form field fluctuations. This statement can be verified
directly, or one can note that E(v) acts on J as a rota-
tion in three dimensions, and as one would expect,
such rotations preserve the squared length J2 of J. It
now follows that the eigenspaces of J2 are invariant
under the errors and, therefore, that the eigenspaces
are good places to look for noiseless subsystems. 
The eigenvalues of J2 are of the form j (j + 1), where
j is the spin quantum number of the corresponding
eigenspace. There are two eigenspaces, one with spin
j = 1/2 and the other with spin j = 3/2. 

The figure shows a thought experiment that involves
passing the three-particle system through a type of
beam splitter or Stern-Gerlach apparatus sensitive to
J2. Using such a beam splitter, the system of particles
can be made to go in one of two directions, depend-

ing on j. In the figure, if the system’s state is in the
spin-3/2 subspace, it passes through the beam splitter;
if it is in the spin-1/2 subspace, the system is
reflected up. It can be shown that the subspace with j
= 3/2 is four dimensional and spanned by the states
that are symmetric under particle permutations.
Unfortunately, there is no noiseless subsystem in this
subspace (refer to the section “Conserved Quantities,
Symmetries, and Noiseless Subsystems”). The spin-
1/2 subspace is also four dimensional and spanned by
the states in Equation (26). The spin-1/2 property of
the subspace implies that the spin operators Ju act in
a way that is algebraically identical to the way σu/2
acts on a single spin-1/2 particle. This property
implies the existence of the syndrome subsystem
introduced in the text. Conventionally, the spin-1/2
subspace is thought of as consisting of two orthogo-
nal two-dimensional subspaces, each behaving like a
spin-1/2 with respect to the Ju. This choice of sub-
spaces is not unique, but by associating them with
two logical states of a noiseless qubit, one can obtain
the subsystem identification of Equation (26). Some
care needs to be taken to ensure that the noiseless
qubit operators commute with the Ju, as they should.
In the thought experiment shown in the figure, one
can imagine unitarily rotating the system emerging in
the upper path to make explicit the syndrome spin-1/2
subsystem and the noiseless qubit with which it must
be paired. The result of this rotation is shown.

Creating a Noiseless Subsystem from Three Spin-1/2 Particles



Error Models

We have seen several models of physical systems and errors in the examples of the 
previous sections. Most physical systems under consideration for QIP consist of parti-
cles or degrees of freedom that are spatially localized, a feature reflected in the error
models that are usually investigated. Because we also expect the physically realized
qubits to be localized, the standard error models deal with quantum errors that act inde-
pendently on different qubits. Logically realized qubits, such as those implemented by
subsystems different from the physically obvious ones, may have more complicated
residual-error behaviors. 

The Standard Error Models for Qubits. The most investigated error model for 
qubits consists of independent, depolarizing errors. This model has the effect of com-
pletely depolarizing each qubit independently with probability p—see Equation (8). For
one qubit, the model is the least biased in the sense that it is symmetric under rotations.
As a result, every state of the qubit is equally affected. Independent depolarizing errors
are considered to be the quantum analogue of the classical independent bit-flip error
model. 

Depolarizing errors are not typical for physically realized qubits. However, given the
ability to control individual qubits, it is possible to enforce the depolarizing model (see
below). Consequently, error correction methods designed to control depolarizing errors
apply to all independent error models. Nevertheless, it is worth keeping in mind that
given detailed knowledge of the physical errors, a special purpose method is usually 
better than one designed for depolarizing errors. We therefore begin by showing how
one can think about arbitrary error models. 

There are several different ways of describing errors affecting a physical system 
(or “sys” for short) of interest. For most situations, in particular if the initial state of the 
system is pure, errors can be thought of as being the result of coupling to an initially
independent environment for some time. Because of this coupling, the effect of error 
can always be represented by the process of adjoining an environment (or “env” for
short) in some initial state |0〉env to the arbitrary state |ψ〉sys, followed by a unitary 
coupling evolution U(env, sys) acting jointly on the environment and the system.
Symbolically, the process can be written as the map

|ψ〉sys → U (env, sys)|0〉env|ψ〉sys . (28)

Choosing an arbitrary orthonormal basis consisting of the states |e〉env for the state space
of the environment, the process can be rewritten in the form

(29)
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where the last step defines operators Ae
(sys) acting on the physical system by 

Ae
(sys) = env〈e|U(env, sys)|0〉env. The expression ∑e|e〉envAe

(sys) is called an environment-
labeled operator. The unitarity condition implies that ∑eAe

†Ae = 11 (with system labels
omitted). The environment basis |e〉env need not represent any physically meaningful
choice of basis of a real environment. For error analysis, the states |e〉env are formal
states that label the error operators Ae. One can use an expression of the form shown in
Equation (29) even when the |e〉 are not normalized or orthogonal, keeping in mind that,
as a result, the identity implied by the unitarity condition changes. 

Note that the state on the right side of Equation (29), representing the effect of the
errors, is correlated with the environment. This means that after removing (or “tracing
over”) the environment, the state of the physical system is usually mixed. Instead 
of introducing an artificial environment, we can also describe the errors by using the 
density operator formalism for mixed states. Define ρ = |ψ〉sys

sys〈ψ|. The effect of 
the errors on the density matrix ρ is given by the transformation

(30)

This is the “operator sum” formalism (Kraus 1983). 
The two ways of writing the effects of errors can be applied to the depolarizing-error

model for one qubit. As an environment-labeled operator, depolarization with probability
p can be written as

(31)

where we introduced five abstract, orthonormal environment states to label the different
events. In this case, one can think of the model as applying no error with probability 
1 – p or completely depolarizing the qubit with probability p. The latter event is repre-
sented by applying one of 11, σx, σy, or σz with equal probability p/4. To be able to think
of the model as randomly applied Pauli matrices, it is crucial that the environment states
labeling the different Pauli matrices be orthogonal. The square roots of the probabilities
appear in the operator because, in an environment-labeled operator, it is necessary to
give quantum amplitudes. Environment-labeled operators are useful primarily because 
of their great flexibility and redundancy. 

In the operator sum formalism, depolarization with probability p transforms the input
density matrix ρ as

(32)

Because the operator sum formalism has less redundancy, it is easier to tell when two
error effects are equivalent. 

In the remainder of this section, we discuss how one can use active intervention to
simplify the error model. To realize this simplification, we intentionally randomize the
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qubit so that the environment cannot distinguish between the different axes defined 
by the Pauli spin matrices. Here is a simple randomization that actively converts an arbi-
trary error model for a qubit into one that consists of randomly applying Pauli operators
according to some distribution. The distribution is not necessarily uniform, so the new
error model is not yet depolarizing. Before the errors act, apply a random Pauli operator
σu (u = 0, x, y, z, σ0 = 11). After the errors act, apply the inverse of that operator,
σu

–1 = σu; then “forget” which operator was applied. This randomization method is
called twirling (Bennett et al. 1996). To understand twirling, we use environment-
labeled operators to demonstrate some of the techniques useful in this context. 
The sequence of actions implementing twirling can be written as follows (omitting
labels for the physical system):

Apply a random σu remembering u with the
help of the system C. 

Errors act.

Apply σu = σu
–1.

Forget which u was used by absorbing 
its memory in the environment. 

The system C that was artificially introduced to carry the memory of u may be a 
classical memory because there is no need for coherence between different |u〉C. 

To determine the equivalent random Pauli operator error model, it is necessary to
rewrite the total effect of the procedure using an environment-labeled sum involving
orthogonal environment states and Pauli operators. To do so, express Ae as a sum of the
Pauli operators, Ae = ∑vαevσv, using the fact that the σv are a linear basis for the space
of one-qubit operators. Recall that σu anticommutes with σv if 0 ≠ u ≠ v ≠ 0. Thus,
σu σv σu = (–1)〈v,u〉σv, where 〈v, u〉 = 1 if 0 ≠ u ≠ v ≠ 0 and 〈v, u〉 = 0 otherwise. We can
now rewrite the last expression of Equation (33) as follows:

(34)

It can be checked that the states (1/2)∑u(–1)〈v,u〉|eu〉env,C are orthonormal for different e
and v. As a result, the states ∑eu(1/2)αev(–1)〈v,u〉|eu〉env,C are orthogonal for different v
and have probability (square norm) given by pv = ∑e |αev|

2. Introducing √pv|v
∼〉env,C =

∑eu(1/2)αev(–1)〈v,u〉|eu〉env,C, we can write the sum of Equation (34) as
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showing that the twirled error model behaves like randomly applied Pauli matrices
with σv applied with probability pv. It is a recommended exercise to reproduce the
above argument using the operator sum formalism.

To obtain the standard depolarizing error model with equal probabilities for the
Pauli matrices, it is necessary to strengthen the randomization procedure by applying
a random member U of the group generated by the 90° rotations around the x-, y-, and
z-axis before the error and then undoing U by applying U–1. 

Randomization can be used to transform any one-qubit error model into the 
depolarizing error model. This explains why the depolarizing model is so useful for
analyzing error correction techniques in situations in which errors act independently
on different qubits. However, in many physical situations, the independence assump-
tions are not satisfied. For example, errors from common internal couplings between
qubits are generally pairwise correlated to first order. In addition, the operations
required to manipulate the qubits and to control the encoded information act on pairs
at a time, which tends to spread even single-qubit errors. Still, in all these cases, the
primary error processes are local. This means that there usually exists an environment-
labeled sum expression for the total error process in which the amplitudes associated
with errors acting simultaneously at k locations in time and space decrease exponen-
tially with k. In such cases, error correction methods that handle all or most errors
involving sufficiently few qubits are still applicable. 

Quantum Error Analysis. One of the most important consequences of the subsys-
tems interpretation of encoding quantum information in a physical system is that the
encoded quantum information can be error-free even though errors have severely
changed the state of the physical system. Almost trivially, any error operator acting
only on the syndrome subsystem has no effect on the quantum information. The goal
of error correction is to actively intervene and maintain the syndrome subsystem in
states where the dominant error operators continue to have little effect on the informa-
tion of interest. An important issue in analyzing error correction methods is to esti-
mate the residual error in the encoded information. A simple example of how that can
be done was discussed for the quantum repetition code. The same ideas can be applied
in general. Let sys be the physical system in which the information is encoded, and
|ψ〉sys an initial state containing such information with the syndrome subsystem appro-
priately prepared. Errors and error-correcting operations modify the state. The new
state can be expressed with environment labeling as ∑e|e〉envAe

(sys)|ψ〉sys. In view of
the partitioning into information-carrying and syndrome subsystems, good states |e〉env
are those states for which Ae

(sys) acts only on the syndrome subsystem, given that the
syndrome has been prepared. The remaining states |e〉 form the set of bad states, B.
The error probability pe can be bounded from above by

(36)

where |A|1 = maxφ 〈φ|A|φ〉, the maximum being taken over normalized states. The second
inequality usually leads to a gross overestimate but is independent of the encoded infor-
mation and often suffices for obtaining good results. Because the environment-labeled
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sum is not unique, a goal of the representation of the errors acting on the system is to
use “good” operators to the largest extent possible. The flexibility of these error expan-
sions makes them very useful for analyzing error models in conjunction with error cor-
rection methods.

In principle, we can obtain better expressions for pe by calculating the density matrix ρ
of the state of the subsystem containing the desired quantum information. This calculation
involves tracing over the syndrome subsystem. The matrix ρ can then be compared to the
intended state. If the intended state is pure, given by |φ〉, the probability of error is given by
1 – 〈φ|ρ|φ〉, which is the probability that a measurement that distinguishes between |φ〉 and
its orthogonal complement fails to detect |φ〉. The quantity 〈φ|ρ|φ〉 is called the fidelity of the
state ρ. 

For applications to communication, the goal is to be able to reliably transmit arbitrary
states through a communication channel, which may be physical or realized via an
encoding/decoding scheme. It is therefore important to characterize the reliability of the
channel independent of the information transmitted. Equation (36) can be used to obtain
state-independent bounds on the error probability but does not readily provide a single
measure of reliability. One way to quantify the reliability is to identify the error of the
channel with the average error εa over all possible input states. The reliability is then
given by the average fidelity 1 – εa. Another elegant way appropriate for QIP is to use
the entanglement fidelity (Schumacher 1996). Entanglement fidelity measures the error
when the input is maximally entangled with an identical reference system. In this
process, the reference system is imagined to be untouched, so that the state of the refer-
ence system, together with the output state, can be compared with the original entangled
state. For a one-qubit channel labeled sys, the reference system is a qubit, which we
label “ref.” An initial, maximally entangled state is

(37)

The reference qubit is assumed to be perfectly isolated and not affected by any errors.
The final state ρ(ref,sys) is compared with |B〉, which gives the entanglement fidelity
according to the formula fe = 〈B|ρ (ref,sys)|B〉. The entanglement error is εe = 1 – fe. It
turns out that this definition does not depend on the choice of maximally entangled
state. Fortunately, the entanglement error and the average error εa are related by a linear
expression:

(38)

For k-qubit channels, the constant 2/3 is replaced by 2k/(2k + 1). Experimental measure-
ments of these fidelities do not require the reference system. There are simple averaging
formulas to express them in terms of the fidelities for transmitting each of a sufficiently
large set of pure states. An example of the experimental determination of the entanglement
fidelity when the channel is realized by error correction is provided in Knill et al. (2001).
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From Quantum Error Detection to Error Correction

In the independent depolarizing error model with small probability p of depolariza-
tion, the most likely errors are those that affect a small number of qubits. That is, if we
define the weight of a product of Pauli operators to be the number of qubits affected, the
dominant errors are those of small weight. Because the probability of a nonidentity Pauli
operator is 3p/4—see Equation (31)—one expects about (3p/4)n of n qubits to be
changed. As a result, good error-correcting codes are considered to be those for which
all errors of weight ≤ e ≅ (3p/4)n can be corrected. It is desirable that e have a high
rate, which means that it is a large fraction of the total number of qubits n (the length of
the code). Combinatorially, good codes are characterized by a high minimum distance, a
concept that arises naturally in the context of error detection.

Quantum Error Detection. Let C be a quantum code, that is, a subspace of the state
space of a quantum system. Let P be the operator that projects onto C, and P⊥ = 11 – P
the one that projects onto the orthogonal complement. Then the pair P, P⊥ is associated
with a measurement that can be used to determine whether a state is in the code or not.
If the given state is |ψ〉, the result of the measurement is P|ψ〉 with probability |P|ψ〉|2
and P⊥|ψ〉 otherwise. As in the classical case, an error-detection scheme consists of
preparing the desired state |ψi〉 ∈ C, transmitting it through, say, a quantum channel,
then measuring whether the state is still in the code, accepting the state if it is, and
rejecting it otherwise. We say that C detects error operator E if states accepted after E
had acted are unchanged except for an overall scale. Using the projection operators, this
is the statement that for every state |ψi〉 ∈ C, PE|ψi〉 = λE |ψi〉. Because P|ψ〉 is in the
code for every |ψ〉, it follows that PEP|ψ〉 = λEP|ψ〉. It follows that a characterization of
detectability is given by Theorem 3.

Theorem 3. E is detectable by C if and only if PEP = λEP for some λE. 

A second characterization is given by Theorem 4.

Theorem 4. E is detectable by C if and only if for all |ψ〉, |φ〉 ∈ C, 〈ψ|E|φ〉 = λΕ 〈ψ|φ〉 for
some λE.

A third characterization is obtained by taking the condition for classical detectability in
Theorem 1 and replacing ≠ by orthogonal to:

Theorem 5. E is detectable by C if and only if for all |φ〉, |ψ〉 in the code with 
|φ〉 orthogonal to |ψ〉, E|φ〉 is orthogonal to |ψ〉. 

For a given code C, the set of detectable errors is closed under linear combinations.
That is, if E1 and E2 are both detectable, then so is αE1 + αE2. This useful property
implies that, to check detectability, one has to consider only the elements of a linear
basis for the space of errors of interest. 

Consider n-qubits with independent depolarizing errors. A robust error-detecting code
should detect as many of the small-weight errors as possible. This requirement motivates
the definition of minimum distance: The code C has minimum distance d if the smallest-
weight product of Pauli operators E for which C does not detect E is d. The notion comes
from classical codes for bits, where a set of code words C′ has minimum distance d if the
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smallest number of flips required to change one code word in C′ into another one in C′ is d.
For example, the repetition code for three bits has minimum distance 3. Note that the
minimum distance for the quantum repetition code is 1: Applying σz

(1) preserves the code
and changes the sign of |���〉 but not of |���〉. As a result, σz

(1) is not detectable. The
notion of minimum distance can be generalized for error models with specified first-order
error operators (Knill et al. 2000). In the case of depolarizing errors, the first-order error
operators are single-qubit Pauli matrices, which are the errors of weight 1. 

Quantum Error Correction. Let E = {E0 = 11, El ,…} be the set of errors that we
wish to be able to correct. When a decoding procedure for the code C exists such that all
errors in E are corrected, we say that E is correctable (by C). A situation in which cor-
rectability of E is apparent occurs when the errors Ei are unitary operators satisfying the
condition that EiC are mutually orthogonal subspaces. The repetition code has this prop-
erty for the set of errors consisting of the identity and Pauli operators acting on a single
qubit. In this situation, the procedure for decoding is to first make a projective measure-
ment and determine which of the subspaces EiC the state is in and then to apply the
inverse of the error operator, that is, E†

i. This situation is not far from the generic one.
One characterization of correctability is described in Theorem 6. 

Theorem 6. E is correctable if and only if there is a linear transformation of the set
E such that the operators E′i in the new set satisfy the following properties: (1) The E′iC
are mutually orthogonal, and (2) E′i restricted to C is proportional to a restriction to 
C of a unitary operator. 

To relate this characterization to detectability, note that the two properties imply that
(E′i ) E′j C is orthogonal to C if i ≠ j and (E′i )

†E′i restricted to C is proportional to the iden-
tity on C. In other words, the (E′i )

†E′j are detectable. This detectability condition applied
to the original error set constitutes a second characterization of correctability, as given 
in Theorem 7. 

Theorem 7. E is correctable if and only if the operators in the set E†E = 
{E†

1 E2 : Ei ∈ E} are detectable. 

Before explaining the characterizations of correctability, we consider the situation of 
n qubits, where the characterization by detectability (Theorem 7) leads to a useful 
relationship between minimum distance and correctability of low-weight errors.

Theorem 8. If a code on n qubits has a minimum distance of at least 2e + 1, then the
set of errors of weight at most e is correctable. 

This theorem follows by observing that the weight of E†
1 E2 is at most the sum of the

weights of the Ei. As a result of this observation, the problem of finding good ways to
correct all errors up to a maximum weight reduces to that of constructing codes with
sufficiently high minimum distance. Thus, questions such as “what is the maximum
dimension of a code of minimum distance d on n qubits?” are of great interest. As in
the case of classical coding theory, this problem appears to be very difficult in gener-
al. Answers are known for small n (Calderbank et al. 1998), and there are asymptotic
bounds (Ashikhmin and Litsyn 1999). Of course, for achieving low error probabilities,
it is not necessary to correct all errors of weight ≤ e, just almost all such errors. For
example, the concatenated codes used for fault-tolerant quantum computation achieve
this goal (see “Fault-Tolerant Quantum Communication and Computation” later in 
this article). 
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For the remainder of this section, we explain the characterizations of correctability.
Using the conditions for detectability from the previous section, the condition for cor-
rectability in Theorem 7 is equivalent to

(39)

This condition is preserved under a linear change of basis for E. That is, if A is any
invertible matrix with coefficients aij, we can define new error operators Dk = ∑iEiaik.
For the Dk, the left side of Equation (39) is

(40)

where Λ is the matrix formed from the λij. Using the fact that Λ is a positive semidefi-
nite matrix (that is, for all x, x†Λx ≥ 0, and Λ† = Λ), we can choose A such that A†ΛA is    

of the form               . In this matrix, the upper left block is the identity operator for 

some dimension. 
An important consequence of invariance under a change of basis of error operators is

that the set of errors correctable by a particular code and decoding procedure is linearly
closed. Thus, if E and D are corrected by the decoding procedure, then so is αE + βD.
This observation also follows from the linearity of quantum mechanically imple-
mentable operations. 

We explain the condition for correctability by using the subsystems interpretation of
decoding procedures. For simplicity, assume that 11 ∈ E. To show that correctability of
E implies detectability of all E ∈ E†E, suppose that we have a decoding procedure that
recovers the information encoded in C after any of the errors in the set E have occurred.
Every physically realizable decoding procedure can be implemented by first adding
ancilla quantum systems in a prepared pure state to form a total system labeled T, then
applying a unitary map U to the state of T, and finally separating T into a pair of sys-
tems (syn, Q), where “syn” corresponds to the syndrome subsystem and Q is a quantum
system with the same dimension as the code that carries the quantum information after
decoding. Denote the state space of the physical system containing C as H and the state
space of system X by HX, where X is any one of the other systems. Let V be the unitary
operator that encodes information by mapping HQ onto C ⊆ H. We have the following
relationships:

HQ ↔V  C ⊆ H ⊆ HT ↔
U

Hsyn ⊗ HQ . (41)

Here, we used bidirectional arrows to emphasize that the operators V and U can be
inverted on their range and therefore identify the states in their domains with the states
in their ranges. The inclusion H ⊆ HT implicitly identifies H with the subspace deter-
mined by the prepared pure state on the ancillas. The last state space of Equation (41) is
expressed as a tensor product, which is the state space of the combined system (syn, Q). 
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For states of HQ, we will write |ψ〉 = |ψ〉Q ↔V |ψ〉L ∈ C. Because 11 is a correctable error,
it must be the case that |ψ〉L ↔

U |0〉syn|ψ〉 ∈ Hsyn ⊗ HQ for some state |0〉syn. To estab-
lish this fact, use the linearity of the maps. In general,

(42)

The |i〉syn need not be normalized or orthogonal. Let F be the subspace spanned by the
|i〉syn. Then U induces an identification of F ⊗ HQ with a subspace C ⊆ H. 
This is the desired subsystem identification. We can then see how the errors act in this
identification. 

(43)

This means that for all |ψ〉 and |φ〉,

(44)

that is, all errors in E†E are detectable. 
Now, suppose that all errors in E†E are detectable. To see that correctability of E fol-

lows, choose a basis for the errors so that λij = δijλi with λi = 1 for i < s and λi = 0 oth-
erwise. Define a subsystem identification by

(45)

for 0 ≤ i < s. By assumption and construction, L〈ψ|Ej
†Ei|ψ〉L = δij, which implies that W

is unitary (after linear extension), and so this is a proper identification. For i ≥ s,
Ei |ψ〉L = 0, which implies that for states in the code, these errors have probability 0.
Therefore, the identification can be used to successfully correct E. 

Constructing Codes

Stabilizer Codes. Most useful quantum codes are based on stabilizer constructions
(Gottesman 1996, Calderbank et al. 1997). Stabilizer codes are useful because they
make it easy to determine which Pauli-product errors are detectable and because they
can be interpreted as special types of classical, linear codes. The latter feature makes it
possible to use well-established techniques from the theory of classical error-correcting
codes to construct good quantum codes. 

A stabilizer code of length n for k-qubits (abbreviated as an [[n, k]] code), is a 
2k-dimensional subspace of the state space of n-qubits that is characterized by the set of

i W Eisys Lψ ψ   ,

L
L

syn
synψ φ ψ φE E j ij i

†   ,=

ψ ψ

ψ ψ

L syn

L syn

↔

↓

↔

0

E ii .

ψ ψ

ψ
L L

syn

→ E

i

i

.↔U

214 Los Alamos Science Number 27  2002

Introduction to Quantum Error Correction



products of Pauli operators that leave each state in the code invariant. Such Pauli opera-
tors are said to stabilize the code. A simple example of a stabilizer code is the quantum
repetition code introduced earlier. The code’s states α|���〉 + β|���〉 are exactly the
states that are unchanged after applying σz

(1) σz
(2) or σz

(1) σz
(3). To simplify the nota-

tion, we write I = 11, X = σx, Y = σy , and Z = σz. A product of Pauli operators can then
be written as ZIXI = σz

(1) σx
(3) (as an example of length 4) with the ordering determin-

ing which qubit is being acted upon by the operators in the product. 
We can understand the properties of stabilizer codes by working out the example of

the quantum repetition code with the stabilizer formalism. A stabilizer of the code is
S = {ZZI, ZIZ}. Let S be the set of Pauli products that are expressible up to a phase as
products of elements of S. For the repetition code, S = {III, ZZI, ZIZ, IZZ}. S consists of
all Pauli products that stabilize the code. The crucial property of S is that its operators
commute, that is, for A, B ∈ S, AB = BA. According to results from linear algebra, it 
follows that the state space H can be decomposed into orthogonal subspaces Hλ such
that for A ∈ S and |ψ〉 ∈ Hλ, A|ψ〉 = λ(A)|ψ〉. The Hλ are the common eigenspaces of S.
The stabilizer code C defined by S is the subspace stabilized by the operators in S,
which means that it is given by Hλ with λ(A) = 1. The subspaces for other λ(A) have
equivalent properties and are often included in the set of stabilizer codes. For the repeti-
tion code, the stabilized subspace is spanned by the logical basis |���〉 and |���〉. From
the point of view of stabilizers, there are two ways in which a Pauli product B can be
detectable: (1) if B ∈ S because, in this case, B acts as the identity on the code and (2) 
if B anticommutes with at least one member (say A) of S. To see that this statement is
correct, let |ψ〉 be in the code. Then A(B|ψ〉) = (AB)|ψ〉 = –(BA)|ψ〉= –B(A|ψ〉) = –B|ψ〉.
Thus, B|ψ〉 belongs to Hλ with λ(A) = –1. Because this subspace is orthogonal to C =
H1, B is detectable. We define the set of Pauli products that commute with all members
of S as S⊥. Thus, B is detectable if either B ∉ S⊥ or B ∈ S. Note that because S consists
of commuting operators, S ⊆ S⊥. 

To construct a stabilizer code that can correct all errors of weight at most one (a
quantum one-error-correcting code), it suffices to find S with the minimum weight of
nonidentity members of S⊥ being at least three (3 = 2 ⋅ 1 + 1)—also refer to Theorem 8.
In this case, we say that S⊥ has minimum distance 3. As an example, we can exhibit a
stabilizer for the famous length-five one-error-correcting code for one qubit (Bennett et
al. 1996, Laflamme et al. 1996):

(46)

As a general rule, it is desirable to exhibit the stabilizer minimally, which means that no
member is the product up to a phase of some of the other members. In this case, the
number of qubits encoded is n – |S|, where n is the length of the code and |S| is the 
number of elements of S. 

To obtain the correspondence between stabilizer codes and classical binary codes,
we replace the symbols I, X, Y, and Z in a Pauli product by 00, 01, 10, and 11, respec-
tively. Thus, the members of the stabilizer can be thought of as binary vectors of
length 2n. We use arithmetic modulo 2 for sums, inner products, and application of a
binary matrix. Because the numbers modulo 2 (ZZ2) form a mathematical field, the
basic properties of vector spaces and linear algebra apply to binary vectors and matri-
ces. Thus, the stabilizer is minimal in the sense introduced above if the corresponding
binary vectors are independent over ZZ2. Given two binary (column) vectors x and y of
length 2 associated with Pauli products, the property of anticommuting is equivalent
toxTBy = 1, where B is the block diagonal 2n × 2n matrix with 2 × 2 blocks given by

S = {X Z Z X I, I X Z Z X, X I X Z Z, Z X I X Z}  .
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This means that S⊥ can be identified with the set of vectors x such that xTBy = 0 for all
binary vectors y associated with the members of S. It turns out that the inner product 
〈x, y〉 = xTBy arises in the study of classical codes over the four-element mathematical
field GF(4), which can be represented by the vectors 00, 01, 10, and 11 with
addition modulo 2 and a new multiplication operation. This relationship leads to the
construction of many good stabilizer codes (Calderbank et al. 1998).

Conserved Quantities, Symmetries, and Noiseless Subsystems. Even though a
physical system may be exposed to error, some of its properties are often not affected by
the errors. If these conserved quantities can be identified with the defining quantities of
qubits or other information units, error-free storage of information can be ensured with-
out active intervention. This is the idea behind noiseless subsystems. 

When do noiseless subsystems exist and how can they be constructed? The examples
discussed in the previous sections show that a noiseless subsystem may be a subset of
physical qubits, as in the trivial two-qubit example, or it may require a more abstract
subsystem identification, as in the example of the three spin-1/2 particles. As will be
explained, in both cases, there are quantities conserved by the errors that can be used to
identify the noiseless subsystem. 

A simple classical example for the use of conserved quantities consists of two physi-
cal bits subject to errors that either flip both bits or leave them alone. A quantity invari-
ant under this noise model is the parity P(s) of a state s of the two bits. The parity P(s)
is defined as the number of �s in the bit string s reduced modulo 2: P(oo) = P(��) = 0,
and P(��) = P(��) = 1. Flipping both bits does not change the value of P. Consequently,
the two values of P can be used to identify the two states of a noiseless bit. The 
syndrome subsystem can be associated with the value (nonconserved) of the first 
physical bit using the function defined by F(�b) = 0, F(�b) = 1. The corresponding 
subsystem identification is obtained by using the values of P and F as the states of the
syndrome (left) and the noiseless information-carrying subsystem (right) according to 
ab ↔ F(ab) ⋅ P(ab). 

In quantum systems, conserved quantities are associated with the presence of 
symmetries, that is, with operators that commute with all possible errors. In the trivial
two-qubit example, operators acting only on qubit 2 commute with the error operators.
In particular, if E is any one of the errors, Eσu

(2) = σu
(2)E for u = x, y, z. It follows 

that the expectations of σu
(2) are conserved. That is, if ρ is the initial state (density

matrix) of the two physical qubits and ρ′ is the state after the errors acted, then 
tr σu

(2)ρ′ = tr σu
(2)ρ. Because the state of qubit 2 is completely characterized by 

these expectations, it follows immediately that it is unaffected by the noise. 
The trivial two-qubit example suggests a general strategy for finding a noiseless

qubit: First, determine the commutant of the errors, which is the set of operators that
commute with all errors. Then, find a subset of the commutant that is algebraically
equivalent to the operators characterizing a qubit. The equivalence can be formulated 
as a one-to-one map f from qubit operators to operators in the commutant. For the 
range of f to be algebraically equivalent, f must be linear and satisfy f(A†) = f(A)† and
f(AB) = f(A)f(B). Once such an equivalence is found, a fundamental theorem from the
representation theory of finite dimensional operator algebras implies that a subsystem
identification for a noiseless qubit exists (Knill et al. 2000, Viola et al. 2001). 

The strategy can be applied to the example of three spin-1/2 particles subject to 
collective errors. One can determine the commutant by using the physical properties of
spin to find the conserved quantities associated with operators in the commutant, as 
suggested in the box “Creating a Noiseless Subsystem from Three Spin-1/2 Particles” on
page 205. Alternatively, observe that, by definition, this error model is symmetric under
permutations of the particles. Therefore, the actions of these permutations on the state
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space form a group ∏ of unitary operators commuting with the errors. It is a fact that the
commutant of the set of collective errors consists of the linear combinations of operators
in ∏. With respect to the group ∏, one can immediately determine the space V3/2 of sym-
metric states, that is, those that are invariant under the permutations. It is spanned by

(47)

A basic result from the representation theory of groups implies that the projection onto
V3/2 is given by P3/2 = (1/6)∑g∈∏g. The orthogonal complement V1/2 of V3/2 is invari-
ant under ∏ and can be analyzed separately. With the subsystem identification of
Equation (26) already in hand, one can see that the permutation π1, which permutes 
the spins according to 1 → 2 → 3 → 1, acts on the noiseless qubit, by applying 
Z240° = e–iσz2π/3, a 240° rotation around the z-axis. Similarly, the permutation π2, which
exchanges the last two spins, acts as σx on the qubit. To make them algebraically equiv-
alent to the corresponding qubit operators, it is necessary to eliminate their action on
V3/2 by projecting onto V1/2: π′1 = (1 – P3/2)π1 and π′2 = (1 – P3/2)π2. Sums of products
of π′1 and π′2 are equivalent to the corresponding sums of products of Z240° and σx,
which generate all qubit operators. To get the subsystem identification of Equation (26),
one can start with a common eigenstate |ψ〉 of π′1 (a z-rotation on the noiseless qubit)
and 2Jz (the syndrome subsystem’s σz) with eigenvalues e–i2π/3 and 1, respectively. The
choice of eigenvalues implies that |ψ〉 ↔ |↑〉 ⋅ |�〉 in the desired identification. We can
obtain the other logical states of the syndrome spin 1/2 and the noiseless qubit by 
applying π′2, 2Jx, and π′22Jx to |ψ〉, which act by flipping the states of the qubit or the
syndrome spin. This method for obtaining the subsystem identification generalizes to
other operator equivalences and error operators. 

Fault-Tolerant Quantum Communication and Computation

The utility of information and information processing depends on the ability to
implement large numbers of information units and information-processing operations.
We say that an implementation of information processing is scalable if the implementa-
tion can realize arbitrarily many information units and operations without loss of 
accuracy and with physical resource overheads that are polynomial (or efficient) in 
the number of information units and operations. Scalable information processing is
achieved by implementing information fault-tolerantly. 

One of the most important results of the work in quantum error-correction and fault-
tolerant computation is the accuracy threshold theorem, according to which scalability 
is possible, in principle, for quantum information.

Theorem 9. Assume the requirements for scalable QIP (see below). If the error 
per gate is less than a threshold, then it is possible to efficiently quantum-compute to
arbitrary accuracy.

Requirements for Scalable QIP. The value of the threshold accuracy (or error)
depends strongly on which set of requirements is used—in particular, the error model
that is assumed. The requirements are closely related to the basic requirements for 
constructing a quantum information processor (DiVincenzo 2000) but have to include

↑↑↑ ↑↑↓ + ↑↓↑ + ↓↑↑( ) ↑↓↓ + ↓↑↓ + ↓↓↑( ) ↓↓↓,  ,  ,    .
1
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explicit assumptions on the error model and on the temporal and spatial aspects of the
available quantum control:
Scalable physical systems. It is necessary to access physical systems that are able to
support qubits or other basic units of quantum information. The systems must be 
scalable; that is, they must be able to support any number of independent qubits. 
State preparation. One must be able to prepare any qubit in the standard initial state
|�〉. Any preexisting content is assumed to be lost, as would happen if, for example,
the qubit is first discarded and then replaced by a prepared one. The condition can be
weakened; that is, it is sufficient that a large fraction of the qubits can be prepared 
in this way. 
Measurement. Being able to measure any qubit in the logical basis is a requirement.
Again, it is sufficient that a large enough fraction of the qubits are measurable. For solv-
ing computational problems with deterministic answers, the standard projective meas-
urement can be replaced by weak measurements that return a noisy number whose
expectation is the probability that a qubit is in the state |�〉 (Laflamme et al. 2001).
Quantum control. One must be able to implement a universal set of unitary quantum
gates acting on a small number (usually, at most, two at a time) of qubits. For most
accuracy thresholds, it is necessary to be able to apply the quantum control in parallel to
any number of disjoint pairs of qubits. This parallelism requirement can be weakened if
a nearly noiseless quantum memory is available. The requirement that it be possible to
apply two-qubit gates to any pair of qubits is unrealistic given the constraints of three-
dimensional space. Work on how to deal with this problem is ongoing (Aharonov and
Ben-Or 1999). The universality assumption can be substantially weakened by replace-
ment of some or all unitary quantum gates with operations to prepare special states or
by additional measurement capabilities. See, for example, Michael Nielsen (2001) and
the references therein. 
Errors. The error probability per gate must be below a threshold and satisfy independ-
ence and locality properties (refer to the section “Error Models”). The definition of gate
includes the “no-op,” which is the identity operation implemented over the time required
for a computational step. For the most pessimistic, independent, local error models, the
error threshold is above ~10–6; for the independent depolarizing errors, it is believed to
be better than 10–4 (Gottesman and Preskill 1999). For some special error models, the
threshold is substantially higher. For example, for the independent “erasure” error
model, where error events are always detected, the threshold is above .01, and for an
error model whose errors are specific, unintentional measurements in the standard basis
of a qubit, the threshold is 1 (Knill et al. 2000). The threshold is also well above .01
when the goal is only to transmit quantum information through noisy quantum channels
(Briegel et al. 1998). 

Realizing Fault Tolerance. The existing proofs of the accuracy threshold theorems
consist of explicit instructions for building a scalable quantum information processor
and analyses of its robustness against the assumed error model. The instructions for 
realizing scalable computation are based on the following simple idea. Suppose that the
error rate per operation for some way of realizing qubits is p. We can use these qubits
and a quantum error-correcting code to encode logical qubits for which the storage error
rate is reduced. For example, if a one-error correcting code is used, the error rate per
storage interval for the logical qubits is expected to be ≤ cp2 for some constant c.
Suppose that we can show how to implement encoded operations, preparations, meas-
urement, and the subroutines required for error correction such that this inequality is
now valid for each basic encoded step, perhaps for a larger constant C. Suppose further-
more that the errors for the encoded information still satisfy the assumed error model.
The newly defined logical qubits then have an error rate of ≤ Cp2, which is less than p
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for p < 1/C. We can use the newly realized qubits as a foundation for making higher-
level logical qubits. The result is multiple levels of encodings. In the next level (level 2),
the error rate is ≤ C3p4, and after k iterations, it is ≤ C2k–1p2k

, a doubly exponentially
decreasing function of k. This procedure is called concatenation (refer to Figure 8).
Because the complexity, particularly the number of physical qubits needed for each final
logical qubit, grows only singly exponentially in k, the procedure is efficient.
Specifically, to achieve a logical error of ε per operation requires of the order of |log(ε)|r
resources per logical qubit for some finite r. In practice, this simple idea is still daunt-
ingly complex, but there is hope that, for realistic errors in physical systems and by
cleverly trading off different variations of these techniques, much of the theoretical com-
plexity can be avoided (Steane 1999). 

Many important developments and ideas of quantum information were ultimately
needed to realize encoded operations, preparations, measurements, and error correction
subroutines that behave well with respect to concatenation. Stabilizer codes provide a
particularly nice setting for implementing many of these techniques. One reason is that
good stabilizer codes are readily constructed. Another is that they enable encoding oper-
ations in a way that avoids spreading errors between the qubits of a single code word
(Gottesman 1998). In addition, there are many tricks based on teleportation that can be
used to maintain the syndrome subsystems in acceptably low error states and to imple-
ment general operations systematically (Gottesman and Chuang 1999). To learn more
about all these techniques, see the textbook by Nielsen and Isaac Chuang (2001) and 
the works of Daniel Gottesman (1998) and John Preskill (1998). 
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Figure 8. Schematic
Representation of
Concatenation
The bottom level represents
qubits realized more or less
directly in a physical system.
Each next level represents 
logical qubits defined by
means of subsystems in terms
of the previous level’s qubits.
More efficient subsystems
might represent multiple
qubits in one code block rather
than the one qubit per code
block shown here.
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Concluding Remarks

The advancements in quantum error-correction and fault-tolerant QIP have shown
that, in principle, scalable quantum computation is achievable. This is a crucial result
because it suggests that experimental efforts in QIP will eventually lead to more than a
few small-scale applications of quantum information to communication and problems
with few qubits. However, the general techniques for achieving scalability that are
known are difficult to realize. Existing technologies are far from achieving sufficient
accuracy even for just two qubits—at least in terms of the demands of the usual accura-
cy-threshold theorems. There is hope that more optimistic thresholds can be shown to
apply if one takes into consideration the specific constraints of a physical device, better
understands the dominant sources of errors, and exploits tailor-made ways of embedding
quantum information into subsystems. Current work in this area is focused on finding
such methods of quantum error control. These methods include approaches to error con-
trol not covered in this article—for example, techniques for actively turning off the
error-inducing environmental interactions (Viola and Lloyd 1998, Viola et al. 1999) and 
modifications to controlling quantum systems that eliminate systematic and calibration
errors (Levitt 1982, Cummins and Jones 1999). Further work is also needed to improve
the thresholds for the more pessimistic error models and for developing more-efficient
scalability schemes. �
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Glossary

Bit. The basic unit of deterministic information. It is a system that can be in one of two 
possible states, � and �.

Bit string. A sequence of �s and �s that represents a state of a sequence of bits. The bit 
strings are words in the binary alphabet. 

Classical information. The type of information based on bits and bit strings and, more 
generally, on words formed from finite alphabets. This is the information used for 
communication between people. Classical information can refer to deterministic or 
probabilistic information, depending on the context. 

Code. A set of states that can be used to represent information. The set of states needs 
to have the properties of the type of information to be represented. The code is 
usually a subset of the states of a given system Q. It is then a Q-code or a code on Q.
If information is represented by a state in the code, Q is said to carry the information. 

Code word. A state in a code. The term is primarily used for classical codes defined on 
bits or systems with nonbinary alphabets. 

Concatenation. An iterative procedure in which higher-level logical information units 
are implemented in terms of lower-level units. 

Control error. An error due to nonideal control in applying operations or gates. 
Communication channel. A means for transmitting information from one place to 

another. It can be associated with a physical system in which the information to be 
transmitted is stored by the sender. The system is subsequently conveyed to the 
receiver, who can then make use of the information. 

Correctable error set. For a given code, a set of errors such that there is an 
implementable procedure R that, after any one of the errors E acts on a state x in 
the code, returns the system to the state x = REx. What procedures are implementable
depends on the type of information represented by the system and, if it is a physical 
system, its physics. 

Decoding. The process of transferring information from an encoded form to its 
“natural” form. In the context of error correction, decoding is often thought of as 
consisting of two steps: one which removes the errors’ effects (sometimes called 
the recovery procedure) and one that extracts the information (often also called 
decoding in a narrower sense). 

Depolarizing errors. An error model for qubits in which random Pauli operators are 
applied independently to each qubit. 

Detectable error. For a given code, an error that has no effect if the state is observed to 
have remained in the code. If the state is no longer in the code, the error is said to 
have been detected, and the state no longer represents valid information. 

Deterministic information. The type of information based on bits and bit strings. This 
is the same as classical information but explicitly excludes probabilistic information. 

Encoding. The process of transferring information from its natural form to an encoded 
form. It requires an identification of the valid states associated with the information 
and the states of a code. The process acts on an information unit and replaces it with 
the system whose state space contains the code. 

Environment. In the context of information encoded in a physical system, it refers to 
other physical systems that may interact with the information-carrying system. 

Environmental noise. Noise due to unwanted interactions with the environment. 
Error. Any unintended effect on the state of a system, particularly in storing or 

otherwise processing information. 
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Error basis. A set of state transformations that can be used to represent any error. For 
quantum systems, errors can be represented as operators acting on the system’s state 
space, and an error basis is a maximal, linearly independent set of such operators. 

Error control. The term for general procedures that limit the effects of errors on 
information represented in noisy, physical systems. 

Error correction. The process of removing the effects of errors on encoded information. 
Error-correcting code. A code with additional properties that enable a decoding 

procedure to remove the effects of the dominant sources of errors on encoded 
information. Any code is error correcting for some error model in this sense. To call 
a code error correcting emphasizes the fact that it was designed for this purpose. 

Error model. An explicit description of how and when errors happen in a given system.
Typically, a model is specified as a probability distribution over error operators. More
general models may need to be considered, particularly in the context of fault-
tolerant computation, for which correlations in time are important. 

Fault tolerance. A property of encoded information that is being processed with gates. 
It means that errors occurring during processing, including control errors and 
environmental noise, do not seriously affect the information of interest. 

Gate. An operation applied to information for the purpose of information processing. 
Hamming distance. The Hamming distance between two binary words (sequences 

of � and �) is the number of positions in which the two words disagree. 
Hilbert space. An n-dimensional Hilbert space consists of all complex n-dimensional 

vectors. A defining operation in a Hilbert space is the inner product. If the vectors are
thought of as column vectors, then the inner product 〈x, y〉 of x and y is obtained by 
forming the conjugate transpose x† of x and calculating 〈x, y〉 = x†y. The inner 
product induces the usual norm |x|2 = 〈x, x〉. 

Information. Something that can be recorded, communicated, and computed with. 
Information is fungible, which implies that its meaning can be identified regardless 
of the particulars of the physical realization. Thus, information in one realization 
(such as ink on a sheet of paper) can be easily transferred to another (for example,
spoken words). Types of information include deterministic, probabilistic, and 
quantum information. Each type is characterized by information units, which are 
abstract systems whose states represent the simplest information of this type. These 
define the natural representation of the information. For deterministic information,
the unit is the bit, whose states are symbolized by � and �. Information units can be 
put together to form larger systems and can be processed with basic operations acting
on a small number of units at a time. 

Length. For codes on n basic information units, the length of the code is n. 
Minimum distance. The smallest number of errors that is not detectable by a code. In 

this context, the error model consists of a set of error operators without specified 
probabilities. Typically, the concept is used for codes on n information units, and the 
error model consists of operators acting on any one of the units. For a classical 
binary code, the minimum distance is the smallest Hamming distance between two 
code words. 

Noise. Any unintended effect on the state of a system, particularly an effect with a 
stochastic component due to incomplete isolation of the system from its environment. 

Operator. A function transforming the states of a system. Operators may be restricted,
depending on the system’s properties. For example, operators acting on quantum 
systems are always assumed to be linear. 

Pauli operators. The Hermitian matrices σx, σy, and σz—refer to Equation (7)—acting 
on qubits. It is often convenient to consider the identity operator to be included in the 
set of Pauli operators. 
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Physical system. A system explicitly associated with a physical device or particle. 
The term is used to distinguish between abstract systems used to define a type of
information and specific realizations, which are subject to environmental noise and 

errors due to other imperfections. 
Probabilistic bit. The basic unit of probabilistic information. It is a system whose state 

space consists of all probability distributions over the two states of a bit. The states 
can be thought of as describing the outcome of a biased coin flip before the coin is 
flipped. 

Probabilistic information. The type of information obtained when the state spaces of 
deterministic information are extended with arbitrary probability distributions over 
the deterministic states. This is the main type of classical information with which 
quantum information is compared. 

Quantum information. The type of information obtained when the state space of 
deterministic information is extended with arbitrary superpositions of deterministic 
states. Formally, each deterministic state is identified with one of an orthonormal 
basis vector in a Hilbert space, and superpositions are unit-length vectors that are 
expressible as complex linear sums of the chosen basis vectors. Ultimately, it is 
convenient to extend this state space again by permitting probability distributions 
over the quantum states. This is still called quantum information. 

Qubit. The basic unit of quantum information. It is the quantum extension of the 
deterministic bit; that is, its state space consists of the unit-length vectors in a two-
dimensional Hilbert space. 

Repetition code. The classical, binary repetition code of length n consists of the two 
words �� ... � and �� ... �. For quantum variants of this code, one applies the 
superposition principle to obtain the states consisting of all unit-length complex 
linear combinations of the two classical code words. 

Scalability. A property of physical implementations of information processing that 
implies that there are no bounds on accurate information processing. That is,
arbitrarily many information units can be realized, and they can be manipulated for 
an arbitrarily long amount of time without loss of accuracy. Furthermore, the 
realization is polynomially efficient in terms of the number of information units and 
gates used. 

States. The set of states for a system characterizes the system’s behavior and possible 
configurations. 

Subspace. For a Hilbert space, a subspace is a linearly closed subset of the vector space.
The term can be used more generally for a system Q of any information type:
A subspace of Q or, more specifically, of the state space of Q is a subset of the state 
space that preserves the properties of the information type represented by Q. 

Subsystem. A typical example of a subsystem is the first (qu)bit in a system consisting 
of two (qu)bits. In general, to obtain a subsystem of system Q, one first selects a 
subset C of Q’s state space and then identifies C as the state space of a pair of 
systems. Each member of the pair is then a subsystem of Q. Restrictions apply,
depending on the types of information carried by the system and subsystems. For 
example, if Q is quantum and so are the subsystems, then C has to be a linear 
subspace and the identification of the subsystems’ state space with C has to be 
unitary. 
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Subsystem identification. The mapping or transformation that identifies the state space 
of two systems with a subset C of states of a system Q. In saying that L is a 
subsystem of Q, we also introduce a second subsystem and identify the state 
space of the combined system with the subset of states C. 

Syndrome. One of the states of a syndrome subsystem. It is often used more narrowly 
for one of a distinguished set of basis states of a syndrome subsystem. 

Syndrome subsystem. In identifying an information-carrying subsystem in the context 
of error correction, the other member of the pair of subsystems required for the 
subsystem identification is called the syndrome subsystem. The terminology comes 
from classical error correction, in which the syndrome is used to determine the most 
likely error that has occurred. 

System. An entity that can be in any of a specified number of states. An example is a 
desktop computer whose states are determined by the contents of its various
memories and disks. Another example is a qubit, which can be thought of as a 

particle whose state space is identified with complex, two-dimensional length-one 
vectors. Here, a system is always associated with a type of information, which in turn
determines the properties of the state space. For example, for quantum information,
the state space is a Hilbert space. For deterministic information, it is a finite set 
called an alphabet. 

Twirling. A randomization method for ensuring that errors act like a depolarizing error 
model. For one qubit, it involves applying a random Pauli operator before the errors 
occur and then undoing the operator by applying its inverse. 

Unitary operator. A linear operator U on a Hilbert space that preserves the inner 
product. That is, for all x and y, 〈Ux, Uy〉 = 〈x, y〉. If U is given in matrix form, then 
this condition is equivalent to U†U = 11. 

Weight. For a binary word, the weight is the number of �s in the word. For an error 
operator acting on n systems by applying an operator to each one of them, the weight
is the number of nonidentity operators applied. 
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Using quantum physics to represent and manipulate information makes possible
surprising improvements in the efficiency with which some problems can be
solved. But can these improvements be realized experimentally? If we consider

the history of implementing theoretical ideas about classical information and computa-
tion, we find that, initially, small numbers of simple devices were used to explore the
advantages and difficulties of information processing. For example, in 1933, Atanasoff
and his colleagues at the Iowa State College were able to implement digital calculations
using about 300 vacuum tubes (Zalta 2002). Although the device was never practical
because its error rate was too large, it was probably the first instance of a programmable
computer using vacuum tubes, and it opened the way for more stable and reliable
devices. Progress toward implementing quantum information processors is also initially
confined to limited capacity and error-prone devices. 

There are numerous proposals for implementing quantum information processing
(QIP) prototypes. To date, however, only three of them have been used to successfully
manipulate more than one qubit: cavity quantum electrodynamics (cavity QED), ion
traps, and nuclear magnetic resonance (NMR) with molecules in a liquid (or liquid-state
NMR). QIP devices are difficult to realize because of an intrinsic conflict between two
of the most important requirements: On the one hand, it is necessary for the device to be
well isolated from, and therefore interact only weakly with, its environment; otherwise,
the crucial quantum correlations on which the advantages of QIP are based are
destroyed. On the other hand, it is necessary for the different parts of the device to inter-
act strongly with each other and for some of them to be coupled strongly with the meas-
uring device, which is needed to read out “answers.” That few physical systems have
these properties naturally is apparent from the absence of obvious quantum effects in 
the macroscopic world. 

One system whose properties constitute a reasonable compromise between the two
requirements consists of the nuclear spins in a molecule in the liquid state. The spins,
particularly those with spin 1/2, provide a natural representation of quantum bits. 
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They interact weakly but reliably with each other, and the effects of the environment are
often small enough. The spins can be controlled with radio-frequency (rf) pulses and
observed with measurements of the magnetic fields they generate. Liquid-state NMR
has so far been used to demonstrate control of up to seven physical qubits. 

It is important to remember that the idea of QIP is less than two decades old, and,
with the notable exception of quantum cryptography, experimental proposals and efforts
aimed at realizing modern QIP began only in the last five years of the 20th century.
Increasingly advanced experiments are being implemented. But from an information
processing point of view, we are a long way from using quantum technology to solve an
independently posed problem not solvable on a standard personal computer—a typical
classical computer. In order to get to the point where such problems can be solved by
QIP, current experimental efforts are devoted to understanding the behavior of and the
methods for controlling various quantum systems, as well as ways of overcoming their
limitations. The work on NMR QIP has focused on the control of quantum systems by
algorithmically implementing quantum transformations as precisely as possible. Within
the limitations of the device, this approach has been surprisingly successful—thanks to
the many scientists and engineers who have perfected NMR spectrometers over the past
50 years. 

After a general introduction to NMR, we give the basics of implementing quantum
algorithms. We describe how qubits are realized and controlled with rf pulses, their
internal interactions, and gradient fields. A peculiarity of NMR is that the internal inter-
actions (given by the internal Hamiltonian) are always on. We discuss how they can be
effectively turned off with the help of a standard NMR method called refocusing.
Liquid-state NMR experiments are done at room temperature, leading to an extremely
mixed (that is, nearly random) initial state. Despite this high degree of randomness, it is
possible to investigate QIP because the relaxation time (the time scale over which useful
signal from a computation is lost) is sufficiently long. We explain how this feature leads
to the crucial ability of simulating a pure (nonrandom) state by using pseudopure states.
We discuss how the answer provided by a computation is obtained by measurement and
how this measurement differs from the ideal, projective measurement of QIP. We then
give implementations of some simple quantum algorithms with a typical experimental
result. We conclude with a discussion of what we have learned from NMR QIP so far
and what the prospects are for future NMR QIP experiments. For an elementary, device-
independent introduction to quantum information and definitions of the states and opera-
tors used here, see the article “Quantum Information Processing” on page 2 . 

Liquid-State NMR

NMR Basics. Many atomic nuclei have a magnetic moment, which means that, like
small bar magnets, they respond to and can be detected by their magnetic fields.
Although single nuclei are impossible to detect directly by these means with currently
available technology, if sufficiently many are available so that their contributions to the
magnetic field add, they can be observed as an ensemble. In liquid-state NMR, the
nuclei belong to atoms forming a molecule, a very large number of which are dissolved
in a liquid. An example is carbon-13-labeled trichloroethylene (TCE)—see Figure 1.
The hydrogen nucleus (that is, the proton) of each TCE molecule has a relatively strong
magnetic moment. When the sample is placed in a powerful external magnetic field,
each proton’s spin prefers to align itself with the field. It is possible to induce the spin
direction to tip off-axis by means of rf pulses, at which point the effect of the static field
is to induce a rapid precession of the proton spins. In this introduction, precession refers
to a rotation of a spin direction around the main axis, here the z-axis, as determined by
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the external magnetic field. The precession frequency ω is often called the Larmor fre-
quency and is linearly related to the strength B of the external field: ω = µB, where µ is
the magnetic moment. For the proton, the magnetic moment is 42.7 megahertz per tesla
(MHz/T), so at a typical field of B = 11.7 tesla, the precession frequency is 500 mega-
hertz. The magnetic field produced by the precessing protons induces oscillating currents
in a coil judiciously placed around the sample and “tuned” to the precession frequency,
allowing observation of the entire ensemble of protons by magnetic
induction. This is the fundamental idea of NMR. The device that applies
the static magnetic field and rf control pulses and that detects the magnet-
ic induction is called an NMR spectrometer—see Figure 2.

Magnetic induction by nuclear spins was observed for the first time
by Edward Purcell and coworkers (1946) and Felix Bloch (1946). This
achievement opened a new field of research, leading to many important
applications, such as molecular structure determination, dynamics stud-
ies both in the liquid and solid state (Ernst et al. 1994), and magnetic
resonance imaging (Mansfield and Morris 1982). The application of
NMR to QIP is related to methods for determining molecular structure
by NMR. Many of the same techniques are used in QIP, but instead of
using uncharacterized molecules, specific ones with well-defined nuclear
spins are synthesized. In this setting, one can manipulate the nuclear
spins as quantum information so that it becomes possible to experimen-
tally demonstrate the fundamental ideas of QIP. 

Perhaps the clearest example of early connections of NMR to infor-
mation theory is the spin echo phenomenon (Hahn 1950). When the stat-
ic magnetic field is not homogeneous (that is, it is not constant across the
sample), the spins precess at different frequencies, depending on their
location in the sample. As a result, the magnetic induction signal rapidly
vanishes because the magnetic fields produced by the spins are no longer
aligned and therefore do not add. The spin echo is used to refocus this
effect by inverting the spins, an action that effectively reverses their pre-
cession until they are all aligned again. Based on spin echoes, the idea of using nuclear
spins for (classical) information storage was suggested and patented by Arthur Anderson
et al. (1955) and Anderson and Erwin Hahn (1955). 

NMR spectroscopy would not be possible if it were not for relatively long “relax-
ation” times. Relaxation is the process that tends to realign the nuclear spins with the
field and randomize their phases, an effect that leads to complete loss of the information
represented in such a spin. In liquid state, relaxation times of the order of seconds are
common and attributed to the weakness of nuclear interactions and a fast averaging
effect associated with the rapid, tumbling motions of molecules in the liquid state. 

Currently, off-the-shelf NMR spectrometers are robust and straightforward to use.
The requisite control is to a large extent computerized, so most NMR experiments
involve few custom adjustments after the sample has been obtained. Given that the
underlying nature of the nuclear spins is intrinsically quantum mechanical, it is not sur-
prising that, soon after Shor’s discovery of the quantum factoring algorithm, NMR was
studied as a potentially useful device for QIP. 

A Brief Survey of NMR QIP. Concrete and workable proposals for using liquid-
state NMR for quantum information were first given by David Cory et al. (1997) and
Neil Gershenfeld and Isaac Chuang (1997). Three difficulties had to be overcome for
NMR QIP to become possible. The first was that the standard definitions of quantum
information and computation require that quantum information be stored in a single
physical system. In NMR, an obvious such system consists of some of the nuclear spins 
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Figure 1. Schematic of a Typical
Molecule (Trichloroethylene) 
Used for QIP
There are three useful nuclei for realizing qubits.
They are the proton (H) and the two carbons
(13C). The molecule is “labeled,” which means
that the nuclei are carefully chosen isotopes.
In this case, the normally predominant isotope
of carbon, 12C (a spin-zero nucleus), is replaced
by 13C, which has spin 1/2.
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in a single molecule. But it is not possible to detect single molecules with available
NMR technology. The solution that makes NMR QIP possible can be applied to other
QIP technologies: Consider the large collection of available molecules as an ensemble
of identical systems. As long as they all perform the same task, the desired answers can
be read out collectively. The second difficulty was that the standard definitions require
that readout take place by a projective quantum measurement of the qubits. From such a
measurement, one learns whether a qubit is in the state |�〉 or |�〉. The two measurement
outcomes have probabilities determined by the initial state of the qubits being used, and
after the measurement, the state collapses to a state consistent with the outcome. 
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Figure 2. Schematic of a Typical NMR Spectrometer (not to scale)
The main components of a spectrometer are the magnet, which is superconducting, and the console , which has the electronics
needed to control the spectrometer. The sample containing a liquid solution of the molecule used for QIP is inserted into the
central core of the magnet, where it is surrounded by the probe. The probe (shown enlarged to the right) contains coils for
applying the rf pulses and magnetic field gradients.
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The measurement in NMR is much too weak to determine the outcome and cause the
state’s collapse for each molecule. But because of the additive effects of the ensemble,
one can observe a (noisy) signal that represents the average, over all the molecules, of
the probability that |�〉 would be the outcome of a projective measurement. It turns out
that this so-called weak measurement suffices for realizing most quantum algorithms,
in particular those whose ultimate answer is deterministic. Shor’s factoring and 
Lov Grover’s search algorithms can be modified to satisfy this property. The final and
most severe difficulty was that, even though in equilibrium there is a tendency for the
spins to align with the magnetic field, the energy associated with this tendency is very
small compared with room temperature. Therefore, the equilibrium states of the mole-
cules’ nuclear spins are nearly random, with only a small fraction pointing in the right
direction. This difficulty was overcome by methods for singling out the small fraction
of the observable signal that represents the desired initial state. These methods were
anticipated in 1977 (Stall et al.) 

Soon after these difficulties were shown to be overcome or circumventable, two
groups were able to experimentally implement short quantum algorithms using NMR
with small molecules (Chuang et al. 1998, Jones et al. 1998). At present, it is considered
unlikely that liquid-state NMR algorithms will solve problems not easily solvable with
available classical computing resources. Nevertheless, experiments in liquid-state NMR
QIP are remarkable for demonstrating that one can control the unitary evolution of 
physical qubits sufficiently well to implement simple QIP tasks. The control methods
borrowed from NMR and developed for the more complex experiments in NMR QIP 
are applicable to other device technologies, enabling better control in general. 

Principles of Liquid-State NMR QIP

In order to physically realize quantum information, it is necessary to find ways of
representing, manipulating, and coupling qubits so as to implement nontrivial quantum
gates, prepare a useful initial state, and read out the answer. The next sections show how
to accomplish these tasks in liquid-state NMR. 

Realizing Qubits. The first step for implementing QIP is to have a physical system
that can carry quantum information. The preferred system for realizing qubits in liquid-
state NMR consists of spin-1/2 nuclei, which are naturally equivalent to qubits. The
nuclear-spin degree of freedom of a spin-1/2 nucleus defines a quantum mechanical
two-state system. Once the direction along the strong external magnetic field is fixed, its
state space consists of the superpositions of “up” and “down” states. That is, we can
imagine that the nucleus behaves somewhat like a small magnet, with a definite axis,
which can point either up (logical state |�〉) or down (logical state |�〉). By the superposi-
tion principle, every quantum state of the form |ψ0〉 = α|�〉 + β|�〉 with |α |2 + |β |2 = 1 is
a possible (pure) state for the nuclear spin. In the external magnetic field, the two logical
states have different energies. In quantum mechanics, this observation means that the
time evolution of |ψ0〉 is given by 

(1)

The constant ω is the precession frequency of the nuclear spin in the external magnet-
ic field in units of radians per second if t is in seconds. The frequency is proportional
to the energy difference ε between the up and down states: ω = 2πε/h, where h is
Planck’s constant. 
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Although a spin-1/2 nucleus’ state space is the same as that of a qubit, the precession
implies that the state is not constant. We would like the realization of a qubit to retain its
state over time when we are not intentionally modifying it. For this reason, in the next
section, the qubit state realized by the nuclear spin will be defined so as to compensate
for the precession. 

Precession frequencies for nuclear spins can vary substantially depending on the
nuclei’s magnetic moments. For example, at 11.7 tesla, the precession frequency for pro-
tons is 500 megahertz, and for carbon-13, it is 125 megahertz. These frequency differ-
ences are exploited in measurement and control to distinguish between the types of
nuclei. The effective magnetic field seen by nuclear spins also depends on their chemi-
cal environment. This dependence causes small variations in the spins’ precession fre-
quencies that can be used to distinguish, for example, the two carbon-13 nuclei in TCE:
The frequency difference (called the “chemical shift”) is 600 to 900 hertz at 11.7 tesla,
depending on the solvent, the temperature, and the TCE concentration. 

If we use the Pauli matrix σz, the time evolution can be expressed as |ψt〉 =
eiwσzt/2|ψ0〉. The operator ωσz/2 is the internal Hamiltonian (that is, the energy observ-
able, in units for which h/(2π) = 1) of the nuclear spin. The direction of the external
magnetic field determines the z-axis. Given a choice of axes, the idea that a single
nuclear spin 1/2 has a direction (as would be expected for a tiny magnet) can be made
explicit by means of the Bloch sphere representation of a nuclear spin’s state (refer to
Figure 3). The Pauli matrix σz can be thought of as the observable that measures the
nuclear spin along the z-axis. Observables for spin along the x- and y-axis are given by
the other two Pauli matrices, σx and σy. Given a state |ψ〉 = α|�〉 + β|�〉 of the nuclear
spin, one can form the density matrix |ψ〉〈ψ| and express it in the form 

(2)

The vector v = (αx, αy, αz) then is a point on the unit sphere in three-dimensional
space. Conversely, every point on the unit sphere corresponds to a pure state of the
nuclear spin. The representation also works for mixed states, which correspond to points
in the interior of the sphere. As a representation of spin states, the unit sphere is called
the Bloch sphere. Because quantum evolutions of a spin correspond to Bloch sphere
rotations, the Bloch sphere is a useful tool for thinking about one- and sometimes about
two-qubit processes. 

If we write the state as a density matrix ρ and expand it in terms of Pauli matrices,

(3)

the coefficients (x, y, z) = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)) of the Pauli matrices form 
the vector for the state. The angles θ and φ are the Euler angles, as shown in Figure 3. For a
pure state, this vector is on the surface of the unit sphere, and for a mixed state, it is inside
the unit sphere. The Pauli matrices are associated with spin observables in the laboratory
frame, so that all axes of the representation are meaningful with respect to real space. 

One-Qubit Gates. The second step for realizing QIP is to give a means for control-
ling the qubits so that quantum algorithms can be implemented. The qubits are controlled
with carefully modulated external fields to realize specific unitary evolutions called gates.
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Each such evolution can be described by a unitary operator applied to one or more qubits.
The simplest method for demonstrating that sufficient control is available is to show how
to realize a set of one- and two-qubit gates that is universal in the sense that, in principle,
every unitary operator can be implemented as a composition of gates (Barenco et al.
1995, DiVincenzo 1995, Lloyd 1995). 

One-qubit gates can be thought of as rotations of the Bloch sphere and can be imple-
mented in NMR with electromagnetic pulses. In general, the effect of a magnetic field
on a nuclear spin is to cause a rotation around the direction of the field. In terms of the
quantum state of the spin, the effect is described by an internal Hamiltonian of the form
H = (ωxσx + ωyσy + ωzσz)/2. The coefficients of the Pauli matrices depend on the mag-
netic field according to � = (ωx, ωy, ωz) = –µB, where µ is the nuclear magnetic
moment and B is the magnetic field vector. In terms of the Hamiltonian, the evolution of
the spin’s quantum state in the presence of the magnetic field B is therefore given by
|ψt〉 = e–iHt|ψ0〉 so that the spin direction in the Bloch sphere rotates around � with
angular frequency ω = |�|. 

In the case of liquid-state NMR, there is an external, strong magnetic field along 
the z-axis, and the applied electromagnetic pulses add to this field. One can think of
these pulses as contributing a relatively weak magnetic field (typically less than .001 of
the external field), whose orientation is in the xy-plane. One use of such a pulse is to tip
the nuclear spin from the z-axis to the xy-plane. To see how that can be done, assume
that the spin starts in the state |�〉, which points up along the z-axis in the Bloch sphere
representation. Because this state is aligned with the external field, it does not precess.
To tip the spin, one can start by applying a pulse field along the x-axis. Because the
pulse field is weak compared with the external field, the net field is still almost along
the z-axis. The spin now rotates around the net field. Since it started along z, it moves
only in a small circle near the z-axis. To force the spin to tip further, one changes 
the orientation of the pulse field at the same frequency as the precession frequency. 
This is called a resonant pulse. Because typical precession frequencies are hundreds 
of megahertz, such a pulse consists of rf electromagnetic fields. 

To better understand how resonant pulses work, it is convenient to use the “rotating
frame.” In this frame, we imagine that our apparatus rotates at the precession frequency
of the nuclear spin. In this way, the effect of the external field is removed. In particular,
in the rotating frame, the nuclear spin does not precess, and a resonant pulse’s magnetic
field looks like a constant magnetic field applied, for example, along the (–x)-axis of the
rotating frame. The nuclear spin responds to the pulse by rotating around the x-axis, as
expected: If the spin starts along the z-axis, it tips toward the (–y)-axis, then goes to 
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Figure 3. Bloch Sphere
Representation of a Qubit
State
The yellow arrow represents a
pure state |ψ〉 for the qubit or the
nuclear spin 1/2. The Euler angles
are indicated and determine the
state according to the formula 
|ψ〉 = cos(θ/2)|��〉 + eiφ sin(φ/2)|��〉.
The red arrow along the z-axis
indicates the orientation of 
the magnetic field and the vector
for |��〉.
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the (–z)-, to the y-, and finally back to the z-axis, all in the rotating frame (see Figure 4). 
The rotating frame makes it possible to define the state of the qubit realized by a

nuclear spin as the state with respect to this frame. As a result, the qubit’s state does not
change unless rf pulses are applied. In the context of the qubit realized by a nuclear
spin, the rotating frame is called the logical frame. In the following, references to the
Bloch sphere axes and associated observables are understood to be with respect to an
appropriate, usually rotating, frame. Different frames can be chosen for each nuclear
spin of interest, so we often use multiple independently rotating frames and refer each
spin’s state to the appropriate frame. 

Use of the rotating frame together with rf pulses makes it possible to implement all
one-qubit gates on a qubit realized by a spin-1/2 nucleus. To apply a rotation around the
x-axis, a resonant rf pulse with effective field along the rotating frame’s (–x)-axis is
applied. This is called an x-pulse, and x is the “axis” of the pulse. While the rf pulse is
on, the qubit’s state evolves as e–iωxσxt/2. The strength (or power) of the pulse is charac-
terized by ωx, the nutation frequency. To implement a rotation by an angle of φ, the
pulse is turned on for a period t = φ/ωx. Rotations around any axis in the plane can be
implemented similarly. The angle of the pulse field with respect to the (–x)-axis is called
the phase of the pulse. It is a fact that all rotations of the Bloch sphere can be decom-
posed into rotations around axes in the plane. For rotations around the z-axis, an easier
technique is possible. The current absolute phase θ of the rotating frame’s x-axis is
given by θ0 + ωt, where ω is the precession frequency of the nuclear spin. Changing the
angle θ0 by –φ is equivalent to rotating the qubit’s state by φ around the z-axis. In this
sense, z-pulses can be implemented exactly. In practice, this change of the rotating
frame’s phase means that the absolute phases of future pulses must be shifted according-
ly. This implementation of rotations around the z-axis is possible because phase control
in modern equipment is extremely reliable so that errors in the phase of applied pulses
are negligible compared with other sources of errors. 

So far, we have considered just one nuclear spin in a molecule. But the rf fields are
experienced by the other nuclear spins as well. This side effect is a problem if only one
target nuclear spin’s state is to be rotated. There are two cases to consider depending on
the precession frequencies of the other, nontarget spins. Spins of nuclei of different iso-
topes, such as those of other species of atoms, usually have precession frequencies that
differ from the target’s by many megahertz at 11.7 tesla. A pulse resonant for the target
has little effect on such spins because, in the rotating frames of the nontarget spins, the
pulse’s magnetic field is not constant but rotates rapidly. The power of a typical pulse is
such that the effect during one rotation of the pulse’s field direction is insignificant and
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Figure 4. Single-Bit
Rotation around the 
x-Axis in the Rotating
Frame
An applied magnetic field
along the rotating frame’s 
(–x)-axis due to a resonant 
rf pulse moves the nuclear spin
direction from the z- toward the
(–y)-axis. The initial and final
states for the nuclear spin are
shown for a 90° rotation. If the
strength of the applied mag-
netic field is such that the spin
evolves according to the
Hamiltonian ωxσx /2, then it has
to be turned on for a time 
t = π/(2ωx) to cause the rotation
shown.
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averages to zero over many rotations. This is not the case for nontarget spins of the same
isotope. Although the variations in their chemical environments result in frequency dif-
ferences, these differences are much smaller, often only a few kilohertz. The period of a
1-kilohertz rotation is 1 millisecond, whereas so-called hard rf pulses require only tens
of microseconds (.00l millisecond) to complete the typical 90° or 180° rotations.
Consequently, in the rotating frame of a nontarget spin with a small frequency differ-
ence, a hard rf pulse’s magnetic field is nearly constant for the duration of the pulse. 
As a result, such a spin experiences a rotation similar to the one intended for the target.
To rotate a specific nuclear spin or spins within a narrow range of precession frequen-
cies, one can use weaker, longer-lasting “soft” pulses instead. This approach leads to 
the following strategies for applying pulses: To rotate all the nuclear spins of a given
species (such as the two carbon-13 nuclei of TCE) by a desired angle, apply a hard 
rf pulse for as short a time as possible. To rotate just one spin having a distinct preces-
sion frequency, apply a soft rf pulse of sufficient duration to have little effect on other
spins. The power of soft pulses is usually modulated in time (“shaped”) to reduce the
time needed for a rotation while minimizing crosstalk, a term that describes unintended
effects on other nuclear spins. 

Two-Qubit Gates. Two nuclear spins in a molecule interact with each other, as one
would expect of two magnets. But the details of the spins’ interaction are more compli-
cated because they are mediated by the electrons. In liquid state, the interaction is also
modulated by the rapid motions of the molecule. The resulting effective interaction is
called the J-coupling. When the difference of the precession frequencies between 
the coupled nuclear spins is large compared with the strength of the coupling, it is a
good approximation to write the coupling Hamiltonian as a product of the z-Pauli 
operators for each spin: HJ = Cσz

(1)σz
(2). This is the weak-coupling regime. 

With this Hamiltonian, an initial state |ψ0〉 of two nuclear-spin qubits evolves as 
|ψt〉 = e–iCσz(1)σz(2)t|ψ0〉, where a different rotating frame is used for each nuclear spin
to eliminate the spin’s internal evolution. (The use of rotating frames is compatible
with the coupling Hamiltonian because the Hamiltonian is invariant under frame 
rotations.) Because the Hamiltonian is diagonal in the logical basis, the effect of the
coupling can be understood as an increase of the (signed) precession frequency of the
second spin if the first one is up and a decrease if the first one is down (see Figure 5).
The changes in precession frequency for adjacent nuclear spins in organic molecules
are typically in the range of 20 to 200 hertz. They are normally much smaller for non-
adjacent nuclear spins. The strength of the coupling is called the coupling constant and
is given as the change in the precession frequency. In terms of the constant C used
above, the coupling constant is given by J = 2C/π in hertz. For example, the coupling
constants in TCE are close to 100 hertz between the two carbons, 200 hertz between
the proton and the adjacent carbon, and 9 hertz between the proton and the far carbon. 

The J-coupling and the one-qubit pulses suffice for realizing the controlled-not oper-
ation usually taken as one of the fundamental gates of QIP. A pulse sequence for imple-
menting the controlled-not in terms of the J-coupling constitutes the first quantum algo-
rithm discussed under “Examples of Quantum Algorithms for NMR.” A problem with
the J-coupling in liquid-state NMR is that it cannot be turned off when it is not needed
for implementing a gate. 

Turning off the J-Coupling. The coupling between the nuclear spins in a molecule
cannot be physically turned off. But for QIP, we need to be able to maintain a state in
memory and to couple qubits selectively. Fortunately, NMR spectroscopists solved this
problem well before the development of modern quantum-information concepts. The
idea is to use the control of single spins to cancel the interaction’s effect over a given
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period. This technique is called refocusing and requires applying a 180° pulse to one of
two coupled spins at the midpoint of the desired period. To understand how refocusing
works, consider again the visualization of Figure 5. A general state is in a superposition of
the four logical states of the two spins. By linearity, it suffices to consider the evolution
with spin 1 being in one of its two logical states, up or down, along the z-axis. Suppose
we wish to remove the effects of the coupling over a period of 2 milliseconds. To do so,
wait 1 millisecond. In a sequence of pulses, this waiting period is called a 1-millisecond
delay. The effect on spin 2 in its rotating frame is to precess counterclockwise if spin 1 is
up and clockwise for the same angle if spin 1 is down. Now, apply a pulse that rotates
spin 1 by 180° around the x-axis. This is called an inversion, or in the current context, a
refocusing pulse. It exchanges the up and down states. For the next 1 millisecond, the
effect of the coupling on spin 2 is to undo the earlier rotation. At the end of the second 
1-millisecond delay, one can apply another 180° pulse to reverse the inversion and recover
the initial state. The pulse sequence is depicted in Figure 6. 

Turning off couplings between more than two nuclear spins can be quite complicated
unless one takes advantage of the fact that nonadjacent nuclear spins tend to be relatively
weakly coupled. Methods that scale polynomially with the number of nuclear spins and
that can be used to selectively couple pairs of nuclear spins can be found in Debbie Leung
et al. (1999) and Jonathan Jones and Knill (1999). These techniques can be used in other
physical systems, where couplings exist that are difficult to turn off directly. An example
is qubits represented by the state of one or more electrons in tightly packed quantum dots. 

Measurement. To determine the answer of a quantum computation, it is necessary to
make a measurement. As noted earlier, the technology for making a projective measure-
ment of individual nuclear spins does not yet exist. In liquid-state NMR, instead of
using just one molecule to define a single quantum register, we use a large ensemble of
molecules in a test tube. Ideally, their nuclear spins are all placed in the same initial
state, and the subsequent rf pulses affect each molecule in the same way. As a result,
weak magnetic signals from, say, the proton spins in TCE add to form a detectable mag-
netic field called the bulk magnetization. The signal that is measured in high-field NMR
is the magnetization in the xy-plane, which can be picked up by coils whose axes are
placed transversely to the external field. Because the interaction of any given nuclear
spin with the coil is very weak, the effect of the coil on the quantum state of the spins is
negligible in most NMR experiments. As a result, it is a good approximation to think of
the generated magnetic fields and their detection classically. In this approximation, each
nuclear spin behaves like a tiny bar magnet and contributes to the bulk magnetization.
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Figure 5. J-Coupling Effect
In the weak-coupling regime
with a positive coupling con-
stant, the coupling between
two spins can be interpreted 
as an increase in precession
frequency of spin 2 when
spin 1 is up and a decrease
when spin 1 is down. The two
diagrams depict the situation 
in which spin 2 is in the plane.
The diagram on the left has
spin 1 pointing up along the 
z-axis. In the rotating frame of
spin 2, it precesses from the 
x-axis to the y-axis. The dia-
gram on the right has spin 1
pointing down, causing a 
precession in the opposite
direction of spin 2. Note that
neither the coupling nor the
external field changes the 
orientation of a spin pointing
up or down along the z-axis.
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As the nuclear spins precess, so does the magnetization. As a result, an oscillating cur-
rent is induced in the coil, provided it is electronically configured to be tuned to the pre-
cession frequency. By observing the amplitude and phase of this current over time, we
can keep track of the absolute magnetization in the plane and its phase with respect to
the rotating frame. This process yields information about the qubit states represented by
the state of the nuclear spins. 

To see how one can use bulk magnetization to learn about the qubit states, consider
the TCE molecule with three spin-1/2 nuclei used for information processing. The bulk
magnetizations generated by the protons and the carbons precess at 500 megahertz and
125 megahertz, respectively. The proton and carbon contributions to the magnetization
are detected separately with two coils tuned to 500 megahertz (proton magnetization)
and 125 megahertz (carbon magnetization). For simplicity, we restrict our attention to
the two carbons and assume that the protons are not interacting with the carbons. (It is
possible to actively remove such interactions by using a technique called decoupling.) 

At the end of a computation, the qubit state of the two nuclear spins is given by a
density matrix ρq. We can assume that this state is the same for each TCE molecule in
the sample. As we mentioned earlier, the density matrix is relative to logical frames for
each nuclear spin. The current phases for the two logical frames with respect to a rotat-
ing reference frame at the precession frequency of the first carbon are known. If we
learn something about the state in the reference frame, that information can be converted
to the desired logical frame by a rotation around the z-axis. Let ρ(0) be the state of the
two nuclear spins in the reference frame. In this frame, the state evolves in time as ρ(t)
according to a Hamiltonian H that consists of a chemical shift term for the difference in
the precession frequency of the second carbon and of a coupling term. To a good
approximation,

(4)

The magnetization detected in the reference x-direction at time t is given by 

(5)M t m tx x x( ) = ( ) +( )( )tr ρ σ σ( ) ( ) ,1 2

H z z z= +π σ π σ σ900 502 1 2Hz Hz( ) ( ) ( ) .
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Figure 6. Pulse Sequence
for Refocusing the
Coupling
The sequence of events is
shown with time running from
left to right. The two spins’ life-
lines are shown in blue, and 
the rf power targeted at each
spin is indicated by the black
line above. Pulses are applied
to spin 1 only, as indicated 
by the rectangular rises in 
rf power at 1 ms and 2 ms.
The axis for each pulse is given
with the pulse. The angle is
determined by the area under
the pulse and is also given
explicitly. Ideally, for pulses 
of this type, the pulse times 
(the widths of the rectangles)
should be zero. In practice, for
hard pulses, they can be as
small as ≈ .01 ms. Any σz

(1)σz
(2)

coupling’s effect is refocused
by the sequence shown so that
the final state of the two spins
is the same as the initial state.
The axis for the pair of refocus-
ing pulses can be changed to
any other axis in the plane.
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where tr(σ) denotes the trace, that is, the sum of the diagonal elements of the matrix σ.
Equation 5 links the magnetization to the Bloch sphere representation. The constant of
proportionality m depends on the size of the ensemble and the magnetic moments of the
nuclei. From the point of view of NMR, m determines a scale whose absolute size is not
relevant. What matters is how strong this signal is compared with the noise in the 
system. For the purpose of the following discussion, we set m = 1. 

We can also detect the magnetization My(t) in the y-direction and use this result
together with Mx(t) to form a complex number representing the planar magnetization. 

(6)

(7)

where we defined                                   

What can we infer about ρ(0) from observing M(t) over time? For the moment,
we neglect the coupling Hamiltonian. Under the chemical shift Hamiltonian 
HCS = π 900Hzσz

(2), M(t) evolves as

(8)

Thus, the signal is a combination of a constant signal given by the first spin’s contribu-
tion to the magnetization in the plane and a signal oscillating with a frequency of
900 hertz with amplitude given by the second spin’s contribution to the planar magneti-
zation. The two contributions can be separated by Fourier-transforming M(t), which
results in two distinct peaks, one at 0 hertz and a second at 900 hertz (refer to Figure 7).

To see how the coupling affects the observed magnetization, we rewrite the expres-
sion for M(t) to take advantage of the fact that the up-down states are invariant under the
full Hamiltonian. 

(9)
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(2)e− iHCS t( )( ) HCS acts only on spin 2.

= tr ρ 0( ) σ+
(1) + e i2π900Hz tσ+

(2)( )( ) Multiply the matrices.

= tr ρ 0( )σ+
(1)( ) + tr ρ 0( )ei2π 900Hztσ+

(2)( ) . Thetrace is linear.

σ σ σ+ = + =








x yi

0 2

0 0
 .

M t M t iM t

t

x y( ) = ( ) + ( )

= ( ) +( )( )+ +tr ρ σ σ( ) ( ) ,1 2
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where 

Using a calculation similar to the one leading to Equation (8), the first term can be 
written as 

(10)

(11)

M1 t( ) = tr e−iHt ρ 0( )eiHtσ +
(1) e↑

(2) + e↓
(2)( ) 

 
 
 

= ei2π 50Hzt tr ρ 0( )σ+
(1)e↑

(2)( ) + e−i2π 50Hz t tr ρ 0( )σ+
(1)e↓

(2)( ) ,

e e↑ ↓=








 =











1 0

0 0

0 0

0 1
 and  .
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(a) The x-magnetization signal is shown as a function of
time for a pair of uncoupled spins with a relative chemical
shift of 900 Hz. The initial spin directions are along the 
x-axis. The signal (called the “free-induction decay”) decays
with a halftime of 0.0385 s because of simulated relaxation
processes. Typically, the halftimes are much longer. A short
one was chosen in order to broaden the peaks for visual
effect. (b) The spectrum, that is, the Fourier transform of the
combined x- and y-magnetization has peaks at frequencies
of 0 Hz (spin 1’s peak) and 900 Hz (spin 2’s peak) because

of the independently precessing pair of spins. (c) This
plot shows the x-magnetization signal when the two 

spins coupled as described in the text. (d) Shown here is
the spectrum for the signal in (c) obtained from combined 
x- and y-magnetization. Each spin’s peak from the previous
spectrum “splits” into two. The left and right peaks of each
pair are associated with the other spin being in the state 
|��〉 and |��〉, respectively. The vertical axis units are relative
intensity with the same constant of proportionality for the
two spectra.

0 500 1000

0

20

40

60

80

100

0 500 1000

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2 0.25
–2

–1

0

1

2

0 0.05 0.1 0.15 0.2 0.25
–2

–1

0

1

2

Time (s) Frequency (Hz)

Time (s) Frequency (Hz)

x-
m

ag
ne

tiz
at

io
n 

si
gn

al
x-

m
ag

ne
tiz

at
io

n 
si

gn
al

R
el

at
iv

e 
in

te
ns

ity
 (

a.
 u

.)
R

el
at

iv
e 

in
te

ns
ity

 (
a.

 u
.)

(a) (b)

(c) (d)

Figure 7. Simulated Magnetization Signals and Spectra 



and similarly for the second term, but with an offset frequency of 900 hertz because of
the chemical shift. It can be seen that the zero-frequency signal splits into two signals
with frequencies of –50 hertz and 50 hertz, respectively. The difference between the two
frequencies is the coupling constant. The amplitudes of the different frequency signals
can be used to infer the expectations of operators such as σ+

(1)e↑
(2), given by

tr (r(0)σ+
(1)e↑

(2)). For n spin-1/2 nuclei, the spectral peak of a nucleus splits into a
group of 2n–1 peaks, each associated with operators such as σ+

(a)e↑
(b)e↓

(c)e↓
(d)…. Later

in the article (see figure on page 249 ), we show a simulated peak group for a nuclear
spin coupled to three other spins. Expectations of the single-spin operators σx

(a) and
σy

(a) can be obtained from the real and imaginary parts of the total signal in a peak
group for a nucleus. The positions of the 2n–1 peaks depend on the couplings. If the
peaks are well separated, we can infer expectations of product operators with only one
σx or σy, such as σx

(a)σz
(b)11(c)σz

(d), by taking linear combinations with appropriate coef-
ficients of the peak amplitudes in a peak group. 

In addition to the unitary evolution due to the internal Hamiltonian, relaxation
processes tend to decay ρ(t) toward the equilibrium state. In liquid state, the equilibrium
state ρthermal is close to 11/N, where N is the total dimension of the state space. The dif-
ference between ρthermal and 11/N is the equilibrium “deviation” density matrix and has
magnetization only along the z-axis (see the section “The Initial State”). Because the
only observed magnetization is planar, the observed signal decays to zero as the state
relaxes to equilibrium. To a good approximation, we can write

(12)

where ρ′(t) has trace zero and evolves unitarily under the Hamiltonian. The effect of the
relaxation process is that M(t) has an exponentially decaying envelope, explaining the
conventional name for M(t), namely, the free induction decay (FID). Typical halftimes
for the decay are .1 to 2 seconds for nuclear spins used for QIP. A normal NMR obser-
vation consists of measuring M(t) at discrete time intervals until the signal is too small.
The acquired FID is then Fourier-transformed to visualize the amplitudes of the different
frequency contributions. The shape of the peaks in Figure 7 reflects the decay envelope.
The width of the peaks is proportional to the decay rate λ. 

For QIP, we wish to measure the probability p that a given qubit (say, qubit 1) is in
the state |�〉1. We have 1 – 2p = tr(ρσz

(1)), which is the expectation of σz
(1). We can

measure this expectation by first applying a 90° y-pulse to qubit 1 and thus changing
the state to ρ′. This pulse has the effect of rotating initial, unobservable z-magnetization
to observable x-magnetization. From M(t) one can then infer tr(ρ′σx

(1)), which is the
desired number. For the coupled pair of carbons, tr(ρ′σx

(1)) is given by the sum of the
real components of the amplitudes of the 50 hertz and the –50 hertz contributions to
M(t). However, the problem is that these amplitudes are determined only up to a scale. A
second problem is that the available states ρ are highly mixed (close to 11/N). The next
section discusses how to compensate for both problems. 

As a final comment on NMR measurement, note that the back reaction on the nuclear
spins due to the emission of electromagnetic energy is weak. This is what enables us to
measure the bulk magnetization over some time. The ensemble nature of the system gives
direct, if noisy, access to expectations of observables such as σz rather than a single
answer—� or �. For algorithms that provide a definite answer, having access only to
expectations is not a problem because it is easy to distinguish the answer from the noise.
However, using expectations can increase the need for quantum resources. For example,
Shor’s factoring algorithm includes a significant amount of classical postprocessing based

ρ ρλt
N

e tt( ) = + ′( ) + ( )−1
not observed ,
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on highly random answers from projective measurements. In order to implement the algo-
rithm in an ensemble setting, the postprocessing must be performed reversibly and integrat-
ed into the quantum computation to guarantee a definite answer. Postprocessing can be
done with polynomial additional quantum resources. 

The Initial State. Because the energy difference between the nuclear spins’ up and
down states is so small compared with room temperature, the equilibrium distribution of
states is nearly random. In the liquid samples used, equilibrium is established after l0 to
40 seconds if no rf fields are being applied. As a result, all computations start with the
sample in equilibrium. One way to think of this initial state is that every nuclear spin in
each molecule begins in the highly mixed state (1 – ε)11/2 + ε |�〉〈�|, where ε is a small
number (of the order of 10–5). This is a nearly random state with a small excess of the
state |�〉. The expression for the initial state derives from the fact that the equilibrium
state ρthermal is proportional to e–H/kT, where H is the internal Hamiltonian of the
nuclear spins in a molecule (in energy units), T is the temperature, and k is the Boltzman
constant. In our case, H/kT is very small, and the coupling terms are negligible.
Therefore,

(13)

(14)

(15)

where εl is half of the energy difference between the up and down states of the 
lth nuclear spin. 

Clearly, the available initial state is very far from what is needed for standard QIP.
However, it can still be used to perform interesting computations. The main technique is to
use available NMR tools to change the initial state to a pseudopure state, which for all
practical purposes, behaves like the initial state required by QIP. The technique is based on
three key observations. First, only the traceless part of the density matrix contributes to the
magnetization. Suppose that we are using n spin-1/2 nuclei in a molecule and the density
matrix is ρ. Then, the current magnetization is proportional to tr(ρ m̂), where m̂ is a trace-
less operator—see Equation (9). Therefore, the magnetization does not depend on the part
of ρ proportional to the identity matrix. A deviation density matrix for ρ is any matrix δ
such that δ – ρ = λll for some λ. For example, ε|�〉〈�| is a deviation for the equilibrium
state of one nuclear spin. We have

(16)

The second observation is that all the unitary operations used, as well as the nonunitary
ones to be discussed below, preserve the completely mixed state 11/2n.1 Therefore, all
future observations of magnetization depend only on the initial deviation. 

The third observation is that all the scales are relative. In particular, as will be
explained, the probability that the final answer of a quantum computation is � can be

tr tr

tr tr

tr

δ ρ λ

ρ

ρ .

m m

m m

m

( ) = +( )( )
= ( ) + ( )
= ( )

ˆ ˆ

ˆ

ˆ ˆ

e−H kT ≈ e−ε1σ z
(1 ) kT e−ε 2σ z

( 2 ) kT ... ,

e−ε1σ z
(1 ) kT ≈ 1 − ε1σ z

(1) kT , and

e−H kT ≈ 1

1

1 − ε1σ z
(1) kT − ε2σ z

(2) kT − ...  ,
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1 The intrinsic relaxation process does not preserve the completely mixed state. But its contribu-
tion is either negligible over the time scale of typical experiments or can be removed with the
help of subtractive phase cycling. 



expressed as the ratio of two magnetizations. It follows that one can arbitrarily rescale a
deviation density matrix. For measurement, the absolute size of the magnetizations is
not important; the most important issue is that the magnetizations are strong enough to
be observable over the noise. 

To explain the relativity of the scales and introduce pseudopure states for QIP, we begin
with one spin-1/2 qubit. Its equilibrium state has a deviation δ = ε|�〉〈�|. If U is the total
unitary operator associated with a computation, then δ is transformed to δ = εU|�〉〈�|U† .
For QIP purposes, the goal is to determine what the final probability ρ� of measuring |�〉 is,
given that |�〉 is the initial state. This probability can be computed as follows:

(17) (17)

(18) 

(19) (19)

(20)

Thus, the probability can be determined from the expectations of σz being measured 
for the initial and final states (in different experiments). This measurement yields the
quantities a = tr(δσz) = ε and a′= tr(δ ′σz)ε tr(U|�〉〈�|U†σz), respectively. The desired
answer is p� = (1 – (a/a′)) /2 and does not depend on the scale ε. 

The method presented in the previous paragraph for determining the probability that the
answer of a quantum computation is � generalizes to many qubits. The goal is to determine
the probability p� of measuring |�〉� in a measurement of the first qubit after a computation
with initial state |�…�〉. Suppose we can prepare the spins in an initial state with a devia-
tion δ = ε|�…�〉〈�…�|. A measurement of the expectations a and a′ of σz

1 for the initial
and final states then yields p�, as before, by the formula p� = (1 – (a/a′))/2. 

A state with deviation ε|ψ〉〈ψ| is called a pseudopure state because that deviation is
proportional to the deviation of the pure state |ψ〉〈ψ|. With respect to scale-independent
NMR observations and unitary evolution, a pseudopure state is equivalent to the corre-
sponding pure state. Because NMR QIP methods are scale independent, we now gener-
alize the definition of deviation density matrix: δ is a deviation of the density matrix ρ if
εδ = ρ + λll for some λ and ε. 

Among the most important enabling techniques in NMR QIP are the methods that can
be used to transform the initial thermal equilibrium state to a standard pseudopure state
with deviation |�…�〉〈�…�|. An example of how that can be done will be given as the
second algorithm in the section “Examples of Quantum Algorithms for NMR.” The basic
principle for each method is to create, directly or indirectly by summing over multiple
experiments, a new initial state as a sum ρ0 =∑iUiρthermalU

†
i, where the Ui are carefully

and sometimes randomly chosen (Cory et al. 1997, Gershenfeld and Chuang 1997, Knill
et al. 1998, Sharf et al. 2000) to ensure that ρ0 has a standard pseudopure deviation.
Among the most useful tools for realizing such sums are pulsed gradient fields. 

Gradient Fields. Modern NMR spectrometers are equipped with the capability of
applying a magnetic field gradient in any direction for a chosen, brief amount of time. 
If the direction is along the sample’s z-axis, then while the gradient is on, the field varies
as B(z) = B0 + γzB1, where B0 is the strong, external field and B1 is the gradient power.
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As a result of this gradient, the precession frequency of nuclear spins depends on their
positions’ z-coordinates. One of the most important applications of gradients is NMR
imaging because gradients make it possible to distinguish different parts of the sample. 

The effect of applying a z-gradient can be visualized for the situation in which there
is only one observable nuclear spin per molecule. Suppose that the initial deviation den-
sity matrix of each nuclear spin is σx in the rotating frame. After a gradient pulse of
duration t, the deviation of a nuclear spin at position z is given by e–iσzνzt/2σxe

iσzνzt/2 =
cos(νzt)σx + sin(νzt)σy, where the constant ν depends linearly on the strength of the gra-
dient and the magnetic moment of the nucleus—see Figure 8. The effect of the gradient
is a z-dependent change in phase. The coil used to measure planar magnetization inte-
grates the contribution to the magnetization of all the nuclei in the neighborhood of 
the coil. Assuming a coil equally sensitive over the interval between –a and a along 
the sample’s z-axis, the observed total x-magnetization is 

(21)

For large values of νt, Mx ≅ 0. In general, a sufficiently powerful gradient pulse elimi-
nates the planar magnetization. 

Interestingly, the effect of a a gradient pulse can be reversed if an opposite gradient
pulse is applied for the same amount of time. This effect is called a “gradient echo.” The
reversal only works if the second pulse is applied sufficiently soon. Otherwise, diffusion
randomizes the molecules’ positions along the gradient’s direction before the second
pulse. If the positions are randomized, the phase change from the second pulse is no
longer correlated with that from the first for any given molecule. The loss of memory 
of the phase change from a gradient pulse can be fine-tuned by variations in the delay
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Figure 8. Pulsed Gradient
Field along the z-Axis 
Initial x-magnetization is
assumed. A spin at z = 0 is not
affected, but the ones above
and below are rotated by an
amount proportional to z. As a
result, the local planar magneti-
zation follows a spiral curve.

Gradient



between the two pulses in a gradient echo sequence. This method can be used for 
applying a controllable amount of phase noise, which is useful for investigating the
effects of noise and the ability to correct for noise in QIP. 

If the gradient pulse is not reversed and the memory of the phase changes is lost, then
the pulse’s effect can be described as an irreversible operation on the state of the nuclear
spin. If the initial state of the nuclear spin in each molecule is ρ, then after the gradient
pulse, the spin state of a molecule at position z is given by ρ(z) = e–iσzνzt/2ρeiσzνzt/2.
Suppose that the positions of the molecules are randomized over the region that the coil
is sensitive to. Now it is no longer possible to tell where a given molecule was when the
gradient pulse was applied. As a result, as far as our observations are concerned, the
state of a molecule is given by ρ(z), where z is random. In other words, the state is indis-
tinguishable from

(22)

Thus, the effect of the gradient pulse is equivalent to the operation ρ → ρ′ as defined by
the above equation. This is an operation of the type mentioned at the end of the previous
section and can be used for making states such as pseudopure states. Note that, after the
gradients have been turned off, nuclei at different positions cannot be distinguished by
the measurement coil. It is therefore not necessary to wait for the molecules’ positions to
be randomized. 

So far, we have described the effects of gradient pulses on isolated nuclear spins in a
molecule. In order to restrict the effect to a single nuclear spin in a molecule, one can
invert the other spins between a pair of identical gradient pulses in the same direction.
This technique refocuses the gradient for the inverted spins. An example of how effects
involving multiple nuclear spins can be exploited is the algorithm for pseudopure state
preparation described in the section “Creating a Labeled Pseudopure State.”

Examples of Quantum Algorithms for NMR

We give three examples of algorithms for NMR QIP. The first is an NMR implemen-
tation of the controlled-not gate. The second consists of a procedure for preparing a 
type of pseudopure state. And the last shows how NMR can be used to investigate the
behavior of simple error-correction procedures. The first two examples are fundamental
to QIP with NMR. Realizations of the controlled-not are needed to translate standard
quantum algorithms into the language of NMR, and procedures for making pseudopure
states have to precede the implementation of many quantum algorithms. 

The Controlled-not. One of the standard gates used in quantum algorithms is the
controlled-not. The controlled-not gate (cnot) acts on two qubits. The action of cnot can
be described by “if the first qubit is |�〉, then flip the second qubit.” Consequently, the
effect of cnot on the logical states is given by the mapping

(23)
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As an operator, the controlled-not is given by

(24)

The goal is to derive a sequence of NMR operations that realize the controlled-not. As
discussed earlier (“Principles of Liquid-State NMR QIP”), the unitary operations imple-
mentable by simple NMR techniques are rotations e–iσu(a)θ/2 by θ around the u-axis,
where u is any direction in the plane (rf pulses), and the two-qubit operations
e–iσz(b)σz(c)φ/2 (the J-coupling). We call e–iσz(b)σz(c)φ/2 a rotation by φ around σz

(b)σz
(c). 

This terminology reflects the fact that such rotations and their effects on deviation 
density matrices can be understood by a generalization of the Bloch sphere picture
called the product operator formalism introduced by Sørensen et al. (1983). 

To implement the controlled-not using NMR techniques, one can decompose the gate
into a sequence of 90° rotations around the main axes on each of the two qubits, and a
90° rotation around σz

(1)σz
(2). One way to find a decomposition is to first realize that the

two-qubit 90° rotation e–iσz(1)σz(2)π/4 is equivalent to a combination of two gates, each
conditional on the logical state of qubit 1. The first gate applies a 90° rotation around
the z-axis (e–iσz(2)π /4) to qubit 2 conditional on qubit l’s state being |�〉1. The second
applies the –90° rotation eiσz(2)π/4 to qubit 2 conditional on qubit l’s state being |�〉1. By
following the two-qubit rotation with a –90° rotation around the z-axis (eiσz(2)π /4) on
qubit 2, the total effect is to cancel the rotation if qubit 1 is in state |�〉1; if qubit 1 is in
state |�〉1, the rotations add to a –180° rotation eiσz(2)π /2 = iσz

(2)
on qubit 2. If we pre-

cede this sequence with e–iσy(2)π/4 and follow it by eiσy(2)π/4 (this operation is called con-
jugating by a –90° y-rotation), the overall effect is a conditional –iσx

(2) operation. Note
how the conjugation rotated the operation’s axis according to the Bloch sphere rules.
The controlled-not is obtained by eliminating the –i with a 90° z-rotation on qubit 1.
That is, the effect of the complete sequence is e–iπ/4|�〉1

1〈�| + e–iπ/4|�〉2
2〈�|σx

(2), which is
the controlled-not up to a global phase. The decomposition thus obtained can be repre-
sented as a quantum network with rotation gates, as shown in Figure 9. The correspon-
ding NMR pulse sequence implementation is shown in Figure 10.

The effect of the NMR pulse sequence that implements the controlled-not can be
visualized for logical initial states with the help of the Bloch-sphere representation of
the states. Figure 11 shows such a visualization for two initial states. 

The effects of the pulse sequence for the controlled-not can be shown with the Bloch
sphere (Figure 11) only if the intermediate states are products of states on each qubit.
Things are no longer so simple if the initial state of the spins is 1/√2(|�〉 + |�〉) |�〉 =
1/√2(|��〉 + |��〉), for example. This is representable as spin l’s arrow pointing along the
x-axis, but the J-coupling leads to a superposition of states (a maximally entangled state)
no longer representable by a simple combination of arrows in the Bloch sphere. 

Creating a Labeled Pseudopure State. One way to realize the standard pseudopure
state starting from the equilibrium density matrix ρthermal is to eliminate the observable
contributions due to terms of ρthermal different from |�…�〉〈�…�|. There are several dif-
ferent methods of accomplishing this task. For example, one can perform multiple
experiments with different preprocessing of the equilibrium state so that signals from
unwanted terms average to zero (temporal averaging), or one can use gradients to
remove the unwanted terms in one experiment (spatial averaging). 

In this section, we show how to use spatial averaging to prepare a so-called labeled
pseudopure state on two nuclear spins. In general, instead of preparing the standard
pseudopure state with deviation |�…〉〈�…| on n spin-1/2 nuclei, one can prepare a

cnot = + = +( ) + −( )(  )� � � �
1
1

1
1 2 1 1 2 2σ σ σ σx z z x
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Figure 10. Pulse Sequence for Realizing the Controlled-not 
The control bit is spin 1 and the target is spin 2. The pulses are shown with the representa-
tion introduced in Figure 6. The z-pulses (shown in green) are virtual, requiring only a change
of reference frame. The placement of the z-pulses between the rf pulses is immaterial
because they commute with the coupling that evolves in between. The delay between the two
rf pulses is 1/(2J) (5 ms if J = 100 Hz), which realizes the desired two-qubit rotation by inter-
nal evolution. The –90° y-rotation is actually implemented with a 90° pulse with axis –y. The
resulting rotation has the desired effect up to a global phase. The pulse widths are exagger-
ated and should be as short as possible to avoid errors due to coupling evolution during the
rf pulses. Alternatively, techniques can be used that compensate for some of these errors
(Knill et al. 2000).

Figure 9. Quantum Network for Implementing the Controlled-not with 
NMR Operations
The conventions for depicting gates are as explained in the article “Quantum Information
Processing” on page 2. The two one-qubit z-rotations can be implemented by a change in the
reference phase of the rotating frame without any rf pulses being applied.
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Figure 11. States
Corresponding to the
Controlled-not Pulse
Sequence 
The two columns (a) and 
(b) show the evolution of 
the qubit states during the
controlled-not pulse
sequence. The blue and red
arrows represent spin 1 and
2, respectively. The configu-
rations in rows 1 to 4 are
shown (1) at the beginning
of the sequence, (2) after
the 90° y-rotation, (3) after
the J-coupling (but before
the z- and y-pulses),
and (4) at the end of the
sequence. The conditional
effect is realized by the sec-
ond spin’s pointing down 
at the end of the second
column. The effect of the 
J-coupling causing the evo-
lution from 2 to 3 is best
understood as a conditional
rotation around the z-axis
(forward by 90° if the first
spin is up; backward, if it is
down).
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labeled pseudopure state with deviation σx
(1)|�…〉〈�…| on n + 1 spins. This state is

easily recognizable with an NMR observation of the first spin: Assuming that all the
peaks arising from couplings to other spins are resolved, the first spin’s peak group has
2n peaks, corresponding to which logical states the other spins are in. If the current state
is the labeled pseudopure state just mentioned, then all the other spins are in the logical
state |�〉, which implies that, in the spectrum, only one of the peaks of the first spin’s
peak group is visible (see Figure 12). 

The labeled pseudopure state can be used as a standard pseudopure state on n qubits.
Observation of the final answer of a computation is possible by observing spin 1,
provided that the coupling to the answer-containing spin is sufficiently strong for the
peaks corresponding to its two logical states to be well separated. For this purpose,
the couplings to the other spins need not be resolved in the peak group. Specifically, to
determine the answer of a computation, the peaks of the spin 1 peak group are separated
into two subgroups, the first (second) containing the peaks associated with the answer-
containing spin being in state |�〉 (|�〉), respectively. Comparing the total signal in each 
of the two peak subgroups gives the relative probabilities of the two answers (� or �).

The labeled pseudopure state can also be used to investigate the effect of a process
that manipulates the state of one qubit and requires n additional initialized qubits.
Examples include experimental verification of one-qubit error-correcting codes as
explained in the next section. 

For preparing the two-qubit labeled pseudopure state, consider the two carbon nuclei
in labeled TCE with the proton spin decoupled so that its effect can be ignored. A “tran-
sition” in the density matrix for this system is an element of the density matrix of the
form |ab〉〈cd|, where a, b, c, and d are � or �. Let ∆(ab, cd) = (a – c) + (b – d), where in
the expression on the right, a, b, c, and d are interpreted as the numbers 0 or 1, as appro-
priate. Applying a pulsed gradient along the z-axis evolves the transitions according to
|ab〉〈cd| → ei∆(ab,cd)νz|ab〉〈cd|, where ν is proportional to the product of the gradient
power and pulse time and z is the molecule’s position along the z-coordinate. For exam-
ple, |��〉〈��| has ∆ = 0 and is not affected whereas |��〉〈��| acquires a phase of e–i2νz.
There are only two transitions, |��〉〈��| and |��〉〈��|, whose acquired phase has a rate of
∆ = ±2 along the z-axis. These transitions are called 2-coherences because ∆ = ±2. The
idea is to first recognize that these transitions can be used to define a labeled pseudopure
“cat” state (see below), then to exploit the 2-coherences’ unique behavior under the 
gradient in order to extract the pseudopure cat state, and finally to decode to a standard
labeled pseudopure state. Note that the property that 2-coherences’ phases evolve at
twice the basic rate is a uniquely quantum phenomenon for two spins. No such effect is
observed for a pair of classical spins. 

The standard two-qubit labeled pseudopure state’s deviation can be written as 
ρstdx

= σx
(1)1/2(11 + σz

(2)). We can consider other deviations of this form where the 
two Pauli operators are replaced by a pair of different commuting products of Pauli
operators. An example is

(25)ρ σ σ σ σcat x x z zx
= ( ) +( )( ) ( ) ( ) ( ) ,1 2 1 21

2
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where we replaced σx
(1) by σx

(1)σx
(2) and σz

(2) by σz
(1)σz

(2). As announced, the two
Pauli products commute. We will show that there is a simple sequence of 90° rotations
whose effect is to decode the deviations σx

(1)σx
(2) → σx

(1) and σz
(1)σz

(2) → σz
(2), thus

converting the state ρcatx to ρstdx
. The state ρcatx can be expressed in terms of the transi-

tions as follows:

(26)

It can be seen that ρcatx consists only of 2-coherences. Another such state is

(27)

(28)

ρcaty
= σ x

(1)σy
( 2)( ) 1

2
11 + σ z

(1)σ z
(2 )( )

= −i �� �� + i �� ��  .

ρcatx
= +�� �� �� �� .
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Figure 12. Labeled
Pseudopure State
Spectrum vs Peak Group
(a) This spectrum shows the
peak group of a simulated
nuclear spin coupled to three
other spins with coupling con-
stants of 100 Hz, 60 Hz, and
24 Hz. The simulation parame-
ters are the same as in
Figure 7. Given above each
peak is the part of the initial
deviation that contributes to
the peak. The spin labels have
been omitted. Each contribut-
ing deviation consists of σx on
the observed nucleus followed
by one of the logical (up or
down) states (density matri-
ces) for each of the other
spins. The notation is as
defined after Equation 9.
(b) This spectrum shows 
what is observed if the initial
deviation is the standard
labeled pseudopure state.
This state contributes only 
to the rightmost peak, as this
peak is associated with the
logical |��〉 states on the spins
not observed.
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Suppose that one can create a state that has a deviation of the form ρ = αρcatx +
βρrest such that ρrest contains no 2-coherences or 0-coherences. After a gradient pulse is
applied, the state becomes

(29)

where ρrest(z) depends periodically on z with spatial frequencies of ±ν, not ±2ν or 0. 
We can then decode this state to 

(30)

(31)

If one now applies a gradient pulse of twice the total strength and opposite orienta-
tion, the first term is restored to αρstdx

, but the second term retains nonzero periodicities
along z. Thus, if we no longer use any operations to distinguish among different mole-
cules along the z-axis or if we let diffusion erase the memory of the position along z,
then the second term is eliminated from observability by being averaged to 0. The
desired labeled pseudopure state is obtained. Zero-coherences during the initial gradient
pulse are acceptable provided that the decoding transfers them to coherences different
from 0 or 2 during the final pulse in order to ensure that they also average to 0. A pulse
sequence that realizes a version of the above procedure is shown in Figure 13. 

We can follow what happens to an initial deviation density matrix of σz
(1) as the net-

work of Figure 13 is executed. We use product operators with the abbreviations I = 11,
X = σx, Y = σy, Z = σz and, for example, XY = σx

(1)σy
(2). At the checkpoints indicated 

in the figure, the deviations are the following:

(32)

Except for a sign, the desired state is obtained. The rightmost term is eliminated after
integrating over the sample or after diffusion erases memory of z. 

This method for making a two-qubit labeled pseudopure state can be extended to
arbitrarily many (n) qubits by exploiting the two n-coherences, which are the transitions
with ∆ = ±n. An experiment implementing this method can be used to determine how
good the available quantum control is. The quality of the control is determined by a
comparison of two spectral signals: Ip, the intensity of the single peak that shows up in
the peak group for spin 1 when observing the labeled pseudopure state, and I0, the inten-
sity of the same peak in an observation of the initial deviation after applying a 90° pulse

ρ α ρ ρ β ρ

α σ σ σ β ρ

= ( ) + ( )(  ) + ′ ( )

( ) + ( )(  ) +( ) + ′ ( )

cos sin

cos sin .( ) ( ) ( )

2 2

2 2
1

2
1 1 1

vz vz z

vz vz z

x  y

x y z

std std rest

rest=

α cos 2vz( )ρcat x
+ sin 2vz( ) ρcat y( )  +  β ρrest z( ) ,
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Checkpoints
 1 ZI
 2 XI
 3 YZ
 4 YX ∝

YX + XY + YX – XY
 5 cos(2νz)(YX + XY) + sin(2νz)(YY – XX) + YX – XY
 6 cos(2νz)(YZ + XY) + sin(2νz)(YY –XZ) + YZ – XY
 7 cos(2νz)(–XI + XY) + sin(2νz)(YY – YI) + –XI – XY
 8 cos(2νz)(–XI – XZ) + sin(2νz)(–YZ – YI) + –XI + XZ
9 –X(I + Z) –(cos(–2νz)X + sin(–2νz)Y)(I – Z)  .+



to rotate σz
(1) into the plane. We performed this experiment on a seven-spin system and

determined that Ip/I0 = .73 ± .02. This result implies a total error of 27 ± 2 percent.
Because the implementation has 12 two-qubit gates, an error rate of about 2 percent per
two-qubit gate is achievable for nuclear spins in this setting (Knill et al. 2000). 

Quantum Error Correction for Phase Errors. Currently envisaged scalable quan-
tum computers require the use of quantum error correction to enable relatively error-
free computation on a platform of physical systems that are inherently error prone. For
this reason, some of the most commonly used subroutines in quantum computers will
be associated with maintaining information in encoded forms. This observation moti-
vates experimental realizations of quantum error correction to determine whether ade-
quate control can be achieved in order to implement these subroutines and to see in a
practical setting that error correction has the desired effects. Experiments to date have
included realizations of a version of the three-qubit repetition code (Cory et al. 1998)
and of the five-qubit one-error-correcting code (the shortest possible such code)—see
the article “Quantum Information Processing” on page 2. In this section, we discuss the
experimental implementation of the former. 

In NMR, one of the primary sources of error is phase decoherence of the nuclear
spins due to both systematic and random fluctuations in the field along the z-axis. At
the same time, using gradient pulses and diffusion, phase decoherence is readily
induced artificially and in a controlled way. The three-bit quantum repetition code (see
the article “Introduction to Quantum Error Correction” on page 188) can be adapted to
protect against phase errors to first order. Define |+〉 = 1/√2 (|�〉 + |�〉) and |–〉 =
1/√2 (|�〉 – |�〉). The code we want is defined by the logical states

(33)

It is readily seen that the three one-qubit phase errors σz
(1), σz

(2), and σz
(3) and “no

error” (11) unitarily map the code to orthogonal subspaces. It follows that this set of

�
L

= + + + , and  �
L

 =  − − − . 
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Figure 13. Realizing a 
Two-Qubit Labeled
Pseudopure State 
The network is shown above
the pulse sequence realizing it.
A coupling constant of 100 Hz
is assumed. Gradients are indi-
cated by spirals in the network.
The gradient strength is given
as the red line in the pulse
sequence. The doubling of the
integrated gradient strength
required to achieve the desired
“echo” is indicated by a dou-
bling of the gradient pulse time.
The numbers above the quan-
tum network are checkpoints
used in the discussion below.
The input state’s deviation is
assumed to be σz

(1). This devia-
tion can be obtained from the
equilibrium state by applying a
90° rotation to spin 2 followed
by a gradient pulse along
another axis to remove σz

(2).
Instead of using a gradient
pulse, one can use phase
cycling, which involves per-
forming two experiments, the
second having the sign of the
phase in the first y-pulse
changed, and then subtracting
the measured signals.
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errors is correctable (for a full discussion, see the article “Introduction to Error
Correction” on page 188). The simplest way to use this code is to encode one qubit’s
state into it, wait for some errors to happen, and then decode to an output qubit. Success
is indicated by the output qubit’s state being significantly closer to the input qubit’s state
after error correction. Without errors between encoding and decoding, the output state
should be the same as the input state, provided that the encoding and decoding proce-
dures are implemented perfectly. Therefore, in this case, the experimentally determined
difference between input and output gives a measurement of how well the procedures
were implemented. 

To obtain the phase-correcting repetition code from the standard repetition code, we
apply Hadamard transforms or 90° y-rotations to each qubit. The quantum network
shown in Figure 14 was obtained in this fashion from the network given in the article on
error correction.

To determine the behavior and the quality of the implementation for various σz-error
models in an actual NMR realization, one can use as initial states labeled pseudopure
states with deviations σu|��〉〈��| for u = x, y, z. Without error, the total output signal on
spin 1 along σu for each u should be the same as the input signal. Some of the data
reported by Cory and coworkers (1998) are shown in Figure 15.

Work on benchmarking error-control methods using liquid-state NMR is continuing.
Other experiments include the implementation of a two-qubit code with an application
to phase errors (Leung et al. 1999) and the verification of the shortest nontrivial noise-
less subsystem on three qubits (Viola et al. 2001). The latter demonstrates that, for some
physically realistic noise models, it is possible to store quantum information in such a
way that it is completely unaffected by the noise. 

Discussion

Overview of Contributions to QIP. Important issues in current experimental efforts
toward realizing QIP are to find ways of achieving necessary quantum control and to
determine whether sufficiently low error rates are possible. Liquid-state NMR is the
only extant system (as of 2002) with the ability to realize relatively universal manipula-
tions on more than two qubits—restricted control has been demonstrated in four ions
(Sackett et al 2000). For this reason, NMR serves as a useful platform for developing
and experimentally verifying techniques for QIP and for establishing simple procedures
for benchmarking information-processing tasks. The cat state and the various error-
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Figure 14. Quantum
Network for the Three-Qubit
Phase-Error-Correcting
Repetition Code
The bottom qubit is encoded
with two controlled-nots and
three y-rotations. In the experi-
ment, either physical or con-
trolled noise is allowed to act.
The encoded information is
then decoded. For the present
purposes, it is convenient to
separate the decoding proce-
dures into two steps: The first is
the inverse of the encoding pro-
cedure; the second consists of
a Toffoli gate that uses the error
information in the syndrome
qubits (the top two) to restore
the encoded information.
The Toffoli gate in the last step
flips the output qubit condition-
ally on the syndrome qubits’
state being |����〉. This gate can be
realized with NMR pulses and
delays by using more sophisti-
cated versions of the implemen-
tation of the controlled-not.
The syndrome qubits can be
“dumped” at the end of the pro-
cedure. The behavior of the 
network is shown for a generic
state in which the bottom qubit
experiences a σz error.
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correction benchmarks (Knill et al. 2000, Knill et al. 2001) consist of a set of quantum
control steps and measurement procedures that can be used with any general-purpose QIP
system to determine, in a device-independent way, the degree of control achieved. The
demonstration of error rates in the few percent per nontrivial operation is encouraging.
For existing and proposed experimental systems other than NMR, achieving such error
rates is still a great challenge. 

Prior research in NMR, independent of quantum information, has proved to be a rich
source of basic quantum-control techniques useful for physically realizing quantum
information in other settings. We mention four examples. The first is the development of
sophisticated shaped-pulse techniques that can selectively control transitions or spins
while being robust against typical errors. These techniques are finding applications to
quantum control involving laser pulses (Warren et al. 1993) and are likely to be very
useful when using coherent light to accurately control transitions in atoms or quantum
dots, for example. The second is the recognition that there are simple ways in which
imperfect pulses can be combined to eliminate systematic errors such as those associated
with miscalibration of power or side effects on off-resonant nuclear spins. Although
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(a) The molecule used in the experiment is shown here.
(b) The bar graph shows fidelities for explicitly applied
errors. The fidelities f (technically, the entanglement fideli-
ties) are an average of the signed ratios fu of the input to the
output signals for the initial deviations σu|����〉〈����| with u = x,
y, z. Specifically, f = 1/4(1 + fx + fy + fz). The reduction from 1
of the green bars (showing fidelity for the full procedure) is
due to errors in our implementation of the pulses and from
relaxation processes. The red bars are the fidelity for the out-
put before the last error-correction step, and they contain the
effects of the errors. (c) The graph shows the fidelities for
the physical relaxation process. Here, the evolution con-
sisted of a delay of up to 1000 ms. The red curve is the
fidelity of the output qubit before the final Toffoli gate that 

corrects the errors based on the syndrome. The green curve
is the fidelity of the output after the Toffoli gate. The effect of
error correction can be seen by a significant flattening of the
curve because correction of first-order (that is, single) phase
errors implies that residual, uncorrected (double or triple)
phase errors increase quadratically in time. The green curve
starts lower than the red one because of additional errors
incurred by the implementation of the Toffoli gate. The
dashed curves are obtained by simulation using estimated
phase relaxation rates with halftimes of 2 s (proton), 0.76 s
(first carbon) and 0.42 s (second carbon). Errors in the 
data points are approximately 0.05. (For a more 
thorough implementation and analysis of a three-qubit
phase-error-correcting code, see Sharf et al. 2000).
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many of these techniques were originally developed for such problems as accurate inver-
sion of spins, they are readily generalized to other quantum gates (Levitt 1982,
Cummins and Jones 1999). The third example is decoupling used to reduce unwanted
external interactions. For example, a common problem in NMR is to eliminate the inter-
actions between proton and labeled carbon nuclear spins in order to observe decoupled
carbon spins. In this case, the protons constitute an external system with an unwanted
interaction. To eliminate the interaction, it is sufficient to invert the protons frequently.
Sophisticated techniques for ensuring that the interactions are effectively turned off
independent of pulse errors have been developed (Ernst et al. 1994). These techniques
have been greatly generalized and shown to be useful for actively creating protected
qubit subsystems in any situation in which the interaction has relatively long correlation
times (Viola and Lloyd 1998, Viola et al. 1999). Refocusing to undo unwanted internal
interactions is our fourth example. The technique for turning off the coupling between
spins that is so important for realizing QIP in liquid-state NMR is a special case of
much more general methods of turning off or refocusing Hamiltonians. For example,
a famous technique in solid-state NMR is to reverse the dipolar coupling Hamiltonian
using a clever sequence of 180° pulses at different phases (Ernst et al. 1994, page 48).
Many other proposed QIP systems suffer from such internal interactions while having
similar control opportunities. 

The contributions of NMR QIP research extend beyond those directly applicable to
experimental QIP systems. It is due to NMR that the idea of ensemble quantum compu-
tation with weak measurement was introduced and recognized as being, for true pure
initial states, as powerful for solving algorithmic problems as the standard model of
quantum computation. (It cannot be used in settings involving quantum communication.)
One implication is that, to a large extent, the usual assumption of projective measure-
ment can be replaced by any measurement that can statistically distinguish between the
two states of a qubit. Scalability still requires the ability to reset qubits during the com-
putation, which is not possible in liquid-state NMR. Another interesting concept emerg-
ing from NMR QIP is that of computational cooling (Schulman and Vazirani 1998),
which can be used to efficiently extract initialized qubits from a large number of noisy
qubits in initial states that are only partially biased toward |�〉. This is a very useful tool
for better exploiting otherwise noisy physical systems. 

The last example of interesting ideas arising from NMR studies is the one-qubit model
of quantum computation (Knill and Laflamme 1998). This is a useful abstraction of the
capabilities of liquid-state NMR. In this model, it is assumed that initially, one qubit is in
the state |�〉 and all the others are in random states. Standard unitary quantum gates can
be applied, and the final measurement is destructive. Without loss of generality, one can
assume that all qubits are reinitialized after the measurement. This model can perform
interesting physics simulations with no known efficient classical algorithms. On the other
hand, with respect to oracles, it is strictly weaker than quantum computation. It is also
known that it cannot faithfully simulate quantum computers (Ambainis et al. 2000).

Capabilities of Liquid-State NMR. One of the main issues in liquid-state NMR QIP
is the highly mixed initial state. The methods for extracting pseudopure states are not
practical for more than 10 (or so) nuclear spins. The problem is that for these methods,
the pseudopure state signal decreases exponentially with the number of qubits prepared
while the noise level is constant. This exponential loss limits the ability to explore and
benchmark standard quantum algorithms even in the absence of noise. There are in fact
ways in which liquid-state NMR can be usefully applied to many more qubits. The first
and less practical is to use computational cooling for a (unrealistically) large number of
spins to obtain less mixed initial states. Versions of this technique have been studied and
used in NMR to increase signal to noise (Glaser et al. 1998). The second is to use the
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one-qubit model of quantum computation instead of trying to realize pseudopure states.
For this purpose, liquid-state NMR is limited only by relaxation noise and pulse control
errors, not by the number of qubits. Noise still limits the number of useful operations,
but nontrivial physics simulations are believed to be possible with less than 100 qubits
(Lloyd 1996). Remarkably, a one-qubit quantum computer can efficiently obtain a 
significant amount of information about the spectrum of a Hamiltonian that can be 
emulated on a quantum computer (Knill and Laflamme 1998, Somma et al. 2002,
Miquel et al. 2002). Consequently, although QIP with molecules in liquid state cannot
realistically be used to implement standard quantum algorithms involving more than
about 10 qubits, its capabilities have the potential of exceeding the resource limitations
of available classical computers for some applications.

Prospects for NMR QIP. There are many more algorithms and benchmarks that can
be usefully explored using the liquid state NMR platform. We hope to soon have a 
molecule with ten or more useful spins and good properties for QIP. Initially, this 
molecule can be used to extend and verify the behavior of existing scalable benchmarks.
Later, experiments testing basic ideas in physics simulation or more sophisticated 
noise-control methods are likely. 

Liquid-state NMR QIP is one of many ways in which NMR can be used for quantum
information. One of the promising proposals for quantum computation is based on phos-
phorus embedded in silicon (Kane 1998) and involves controlling phosphorus nuclear
spins using NMR methods. In this proposal, couplings and frequencies are controlled
with locally applied voltages. Universal control can be implemented with rf pulses. It is
also possible to scale up NMR QIP without leaving the basic paradigms of liquid-state
NMR while adding such features as high polarization, the ability to dynamically reset
qubits (required for scalability), and much faster two-qubit gates. One proposal for
achieving this goal is to use dilute molecules in a solid-state matrix instead of molecules
in liquid (Cory et al. 2000). This approach may lead to pure-state quantum computation
for significantly more than ten qubits. 

NMR QIP has been a useful tool for furthering our understanding of the experimental
challenges of quantum computation. We believe that NMR QIP will continue to shed
light on important issues in physically realizing quantum information. �

Further Reading

Ambainis, A., L. J. Schulman, and U. Vazirani. 2000. Computing with Highly Mixed States. In Proceedings of
the 32th Annual ACM Symposium on the Theory of Computation (STOC). p. 697. New York:. ACM Press.

Anderson, A. G., and E. L. Hahn. 1955. Spin Echo Storage Technique. U.S. Patent # 2,714,714.
Anderson, A. G., R. Garwin, E. L. Hahn, J. W. Horton, and G. L. Tucker. 1955. Spin Echo Serial Storage 

Memory. J. Appl. Phys. 26: 1324.
Barenco, A., C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, et al. 1995. Elementary Gates 

for Quantum Computation. Phys. Rev. A 52: 3457.
Bloch, F. 1946. Nuclear Induction. Phys. Rev. 70: 460.
Chuang, I. L., L. M. K. Vandersypen, X. Zhou, D. W. Leung, and S. Lloyd. 1998. Experimental Realization of 

a Quantum Algorithm. Nature 393: 143.
Cory, D. G., A. F. Fahmy, and T. F. Havel. 1997. Ensemble Quantum Computing by NMR-Spectroscopy. Proc.

Natl. Acad. Sci. U.S.A. 94: 1634.
Cory, D. G., R. Laflamme, E. Knill, L. Viola, T. F. Havel, N. Boulant, et al. 2000. NMR Based Quantum 

Information Processing: Achievements and Prospects. Fortschr. Phys. 48: 875.
Cory, D. G., W. Maas, M. Price, E. Knill, R. Laflamme, W. H. Zurek, et al. 1998. Experimental Quantum 

Error Correction. Phys. Rev. Lett. 81: 2152.
Cummins, H. K., and J. A. Jones. 1999. Use of Composite Rotations to Correct Systematic Errors in NMR 

Quantum Computation. [Online]: http://eprints.lanl.gov (quant-ph/9911072).
DiVincenzo, D. P. 1995. Two-Bit Gates are Universal for Quantum Computation. Phys. Rev. A 51: 1015.

Number 27  2002  Los Alamos Science  255

NMR and Quantum Information Processing

Raymond Laflamme graduated from
the University of Laval, Canada, in
1983 with a Bachelor’s degree in
physics. Raymond received a Ph.D. in
applied mathe-
matics and theo-
retical physics
from the
University of
Cambridge,
England, where
he worked
under the direc-
tion of Stephen
Hawking.
Raymond then became a Killam post-
doctoral fellow at the University of
British Columbia before returning to
Cambridge as a research fellow at
Peterhouse College. In 1992, he came
to Los Alamos as a Director-funded
postdoctoral fellow, became 
an Oppenheimer fellow in 1994, and
a technical staff member in 1997. In
the fall of 2001, he moved to the
newly created Perimeter Institute at
the University of Waterloo, where he
currently holds a Canadian Research
Chair in Quantum Information. 
His research includes both theoretical
and experimental investigations of
quantum information processing.



Ernst, R. R., G. Bodenhausen, and A. Wokaun. 1994. Principles of Nuclear Magnetic Resonance in One and 
Two Dimensions. Oxford: Oxford University Press.

Gershenfeld, N. A., and I. L. Chuang. 1997. Bulk Spin Resonance Quantum Computation. Science 275: 350.
Glaser, S. J., T. Schulte-Herbruggen, M. Sieveking, 0. Schedletzky, N. C. Nielsen, 0. W. Sørensen, and C. 

Griesigner. 1998. Unitary Control in Quantum Ensembles: Maximizing Signal Intensity in Coherent 
Spectroscopy. Science 280: 421.

Hahn, E. L. 1950. Spin Echoes. Phys. Rev. 80: 580.
Jones, J. A., and E. Knill. 1999. Efficient Refocussing of One Spin and Two Spin Interactions for NMR. 

J. Magn. Reson. 141: 322.
Jones, J. A., M. Mosca, and R. H. Hansen. 1998. Implementation of a Quantum Search Algorithm on a 

Quantum Computer. Nature 392: 344.
Kane, B. E. 1998. A Silicon-Based Nuclear Spin Quantum Computer. Nature 393: 133. 
Knill, E., and R. Laflamme. 1998. On the Power of One Bit of Quantum Information. Phys. Rev. Lett. 

81: 5672.
Knill, E., I. L. Chuang, and R. Laflamme. 1998. Effective Pure States for Bulk Quantum Computation. 

Phys. Rev. A 57: 3348.
Knill, E., R. Laflamme, R. Martinez, and C. Negrevergne. 2001. Implementation of the Five Qubit Error 

Correction Benchmark. Phys. Rev. Lett. 86: 5811.
Knill, E., R. Laflamme, R. Martinez, and C.-H. Tseng. 2000. An Algorithmic Benchmark for Quantum 

Information Processing. Nature 404: 368.
Leung, D. W., I. L. Chuang, F. Yamaguchi, and Y. Yamamoto. 1999. Efficient Implementation of Selective 

Recoupling in Heteronuclear Spin Systems Using Hadamard Matrices. [Online]: http://eprints.lanl.go. 
(quant-ph/9904100).

Leung, D., L. Vandersypen, X. L. Zhou, M. Sherwood, C. Yannoni, M. Kubinec, and I. L. Chuang. 1999. 
Experimental Realization of a Two-Bit Phase Damping Quantum Code. Phys. Rev. A 60: 1924.

Levitt, M. H. 1982. Symmetrical Composite Pulse Sequences for NMR Population-Inversion 1. Compensation 
for Radiofrequency Field Inhomogeneity. J. Magn. Reson. 48: 234.

Lloyd, S. 1995. Almost Any Quantum Logic Gate is Universal. Phys. Rev. Lett. 75: 346.
Lloyd, S. 1996. Universal Quantum Simulators. Science 273: 1073.
Mansfield, P., and P. Morris. 1982. NMR Imaging in Biomedicine. Adv. Magn. Reson. S2: 1.
Miquel, C., J. P. Paz, M. Saraceno, B. Knill, R. Laflamme, and C. Negrevergne. 2002. Interpretation of
Tomography and Spectroscopy as Dual Forms of Quantum Computations. Nature 418: 59. 
Purcell, E. M., H. C. Torrey, and R. V. Pound. 1946. Resonance Absorption by Nuclear Magnetic Moments in 

a Solid. Phys. Rev. 69: 37.
Sackett, C. A., D. Kielpinski, B. B. King, C. Langer, V. Meyer, C. J. Myatt, et al. 2000. Experimental 

Entanglement of Four Particles. Nature 404: 256.
Schulman, L. J., and U. Vazirani. 1998. Scalable NMR Quantum Computation. In Proceedings of the 3lth 

Annual ACM Symposium on the Theory of Computation (STOC). p. 322. El Paso, TX: ACM Press.
Sharf, Y., T. F. Havel, and D. G. Cory. 2000. Spatially Encoded Pseudopure States for NMR Quantum-

Information Processing. Phys. Rev. A 62: 052314.
Sharf, Y., D. G. Cory, S. S. Somaroo, E. Knill, R. Laflamme, W. H. Zurek, and T. F. Havel. 2000. A Study of 

Quantum Error Correction by Geometric Algebra and Liquid-State NMR Spectroscopy. Mol. Phys. 
98: 1347.

Somma, R., G. Ortiz, J. E. Gubernatis, R. Laflamme, and E. Knill. 2002. Simulating Physical Phenomena by 
Quantum Networks. Phys. Rev. A. 65:042323

Sørensen, O. W., G. W. Eich, M. H. Levitt, G. Bodenhausen, and R. R. Ernst. 1983. Product Operator-
Formalism for the Description of NMR Pulse Experiments. Prog. Nucl. Magn. Reson. Spectrosc. 16: 163.

Stoll, M. E., A. J. Vega, and R. W. Vaughan. 1977. Explicit Demonstration of Spinor Character for a Spin-1/2 
Nucleus Using NMR Interferometry. Phys. Rev. A 16: 1521.

Viola, L., and S. Lloyd. 1998. Dynamical Suppression of Decoherence in Two-State Quantum Systems. 
Phys. Rev. A 58: 2733.

Viola, L., E. Knill, and S. Lloyd. 1999. Dynamical Decoupling of Open Quantum Systems. 
Phys. Rev. Lett. 82: 2417.

Viola, L., E. M. Fortunato, M. A. Pravia, E. Knill, R. Laflamme, and D. G. Cory. 2001. Experimental 
Realization of Noiseless Subsystems for Quantum Information Processing. Science 293: 2059.

Warren, W. S., H. Rabitz, and M. Dahleh. 1993. Coherent Control of Quantum Dynamics: The Dream is Alive.
Science 259: 1581.

Zalta, E. N., ed. 2002. Stanford Encyclopedia of Philosophy. Stanford University, Stanford, CA:
The Metaphysics Research Lab. 

256 Los Alamos Science Number 27  2002

NMR and Quantum Information Processing

Contact Information

R. Laflamme: laflamme@iqc.ca

E. Knill: knill@1anl.gov

D. Cory: dcory@mit.edu

E. M.Fortunato: evanmf@mit.edu

T. Havel: efhave1@mit.edu

C. Miquel: miquel@df.uba.ar

R. Martinez: rudy@lanl.gov

C. Negrevergne: cjn@lanl.gov

G. Ortiz: g_ortiz@lanl.gov

M. A.Pravia: praviam@mit.edu

Y. Sharf: ysharf@mit.edu

S. Sinha: suddha@mit.edu

R. Somma: somma@lanl.gov

L. Viola: lviola@lanl.gov



Glossary

Bloch sphere. A representation of the state space of a qubit using the unit sphere in 
three dimensions. See Figure 3 in the main text of the article.

Crosstalk. In using physical control to implement a gate, crosstalk refers to unintended 
effects on qubits not involved in the gate. 

Decoupling. A method for turning off the interactions between two sets of spins. In 
NMR, this task can be achieved if one applies a rapid sequence of refocusing pulses

to one set of spins. The other set of spins can then be controlled and observed as if inde-
pendent of the first set. 
Deviation of a state. If ρ is a density matrix for a state and ρ = α11 + βσ, then σ is a 

deviation of ρ. 
Ensemble computation. Computation with a large ensemble of identical and 

independent computers. Each step of the computation is applied identically to the 
computers. At the end of the computation, the answer is determined from a noisy 
measurement of the fraction p� of the computers whose answer is “��” The amount of 
noise is important for resource accounting: To reduce the noise to below ε requires 
increasing the resources used by a factor of the order of 1/ε2. 

Equilibrium state. The state of a quantum system in equilibrium with its environment. 
In the present context, the environment behaves like a heat bath at temperature T, and
the equilibrium state can be written as ρ = e–H/kT/Z, where H is the effective internal 
Hamiltonian of the system and Z is determined by the identity trρ = 1. 

FID. Free induction decay. To obtain a spectrum on an NMR spectrometer after having 
applied pulses to a sample, one measures the decaying planar magnetization induced 
by the nuclear spins as they precess. The x- and y-components Mx(t) and My(t) of the 
magnetization as a function of time are combined to form a complex signal M(t) = 
Mx(t) + iMy(t). The record of M(t) over time is called the FID, which is Fourier-
transformed to yield the spectrum. 

Inversion. A pulse that flips the z-component of the spin. Note that any 180° rotation 
around an axis in the xy-plane has this effect. 

J-coupling. The type of coupling present between two nuclear spins in a molecule in the
liquid state.

Labeled molecule. A molecule in which some of the nuclei are substituted by less 
common isotopes. A common labeling for NMR QIP involves replacing the naturally 
abundant carbon isotope 12C, with the spin-1/2 isotope 13C. 

Larmor frequency. The precession frequency of a nuclear spin in a magnetic field. It 
depends linearly on the spin’s magnetic moment and the strength of the field. 

Logical frame. The current frame with respect to which the state of a qubit carried by a 
spin is defined. There is an absolute (laboratory) frame associated with the spin 
observables σx, σy, and σz. The observables are spatially meaningful. For example,
the magnetization induced along the x-axis is proportional to tr(σx|ψ〉〈ψ|), where |ψ〉 
is the physical state of the spin. Suppose that the logical frame is obtained from the 
physical frame by a rotation by an angle of θ around the z-axis. The observables for 
the qubit are then given by σx

(L) = cos(θ)σx + sin(θ)σy, σy
(L) = cos(θ)σy – 

sin(θ)σz, and σz
(L) = σz. As a result, the change to the logical frame transforms the 

physical state to a logical state according to |φ〉L = eiσzθ /2|ψ〉. That is, the logical 
state is obtained from the physical state by a –θ rotation around the z-axis. 
A resonant logical frame is used in NMR to compensate for the precession induced 
by the strong external field. 

Magnetization. The magnetic field induced by an ensemble of magnetic spins. 
The magnitude of the magnetization depends on the number of spins, the extent of 
alignment, and the magnetic moments. 
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Nuclear magnetic moment. The magnetic moment of a nucleus determines the strength
of the interaction between its nuclear spin and a magnetic field. The precession 
frequency ω of a spin-1/2 nucleus is given by µB, where µ is the nuclear magnetic 
moment and B the magnetic field strength. For example, for a proton, µ = 42.7 Mhz/T. 

NMR spectrometer. The equipment used to apply rf pulses to and observe precessing 
magnetization from nuclear spins. Typical spectrometers consist of a strong,
cylindrical magnet with a central bore in which there is a “probe” that contains coils 
and a sample holder. The probe is connected to electronic equipment for applying rf 

currents to the coils and for detecting weak oscillating currents induced by the 
nuclear magnetization. 
Nuclear spin. The quantum spin degree of freedom of a nucleus. It is characterized by 

its total spin quantum number, which is a multiple of 1/2. Nuclear spins with spin 1/2
are two-state quantum systems and can therefore be used as qubits immediately.

Nutation. The motion of a spin in a strong z-axis field caused by a resonant pulse. 
Nutation frequency. The angular rate at which a resonant pulse causes nutation of a 

precessing spin around an axis in the plane.
One-qubit quantum computing. The model of computation in which one can initialize 

any number of qubits in the state where Qubit 1 is in the state |�〉1 and all the other 
qubits are in a random state. One can then apply one- and two-qubit unitary quantum 
gates and make one final measurement of the state of Qubit 1 after which the system
is reinitialized. The model can be used to determine properties of the spectral density 
function of a Hamiltonian, which can be emulated by a quantum computer (Knill and
Laflamme 1998). 

Peak group. The spectrum of an isolated nuclear spin consists of one peak at its 
precession frequency. If the nuclear spin is coupled to others, this peak “splits,” and 
multiple peaks are observed near the precession frequency. The nuclear spin’s peak 
group consists of these peaks.

Precession. An isolated nuclear spin’s state can be associated with a spatial direction 
with the help of the Bloch sphere representation. If the direction rotates around 
the z-axis at a constant rate, we say that it precesses around the z-axis. The motion 
corresponds to that of a classical top experiencing a torque perpendicular to both the 
z-axis and the spin axis. For a nuclear spin, the torque can be caused by a magnetic 
field along the z-axis. 

Projective measurement. A measurement of a quantum system determined by a 
complete set of orthogonal projections whose effect is to apply one of the projections
to the system (“wave function collapse”) with a probability determined by the 
amplitude squared of the projected state. Which projection occurred is known after 
the measurement. The simplest example is that of measuring Qubit q in the logical 
basis. In this case, there are two projections, namely, P� = |�〉q

q〈�| and P� = |�〉q
q〈�|. 

If the initial state of all the qubits is |ψ〉, then the probabilities of the two 
measurement outcomes o and � are po = 〈ψ|P�|ψ〉 and p� = 〈ψ|P�|ψ〉, respectively. 
The state after the measurement is P� � |ψ〉/√p� for outcome � and P� = |ψ〉/√p� for 
outcome �.

Pseudopure state. A state with deviation given by a pure state |ψ〉〈ψ|.
Pulse. A transient field applied to a quantum system. In the case of NMR QIP, pulses 

are rotating magnetic fields (rf pulses) whose effects are designed to cause specific 
rotations of the qubit states carried by the nuclear spins. 

Radio-frequency (rf) pulse. A pulse resonant at radio frequencies. Typical frequencies 
used in NMR are in this range. 
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Refocusing pulse. A pulse that causes a 180° rotation around an axis in the plane. 
A typical example of such a rotation is e–iσxπ /2 = –iσx, which is a 180° x-rotation.

Resonant rf pulse. A pulse whose field oscillates at the same frequency as the 
precession frequency of a target nuclear spin. Ideally, the field is in the plane,
rotating at the same frequency and in the same direction as the precession. However,
as long as the pulse field is weak compared with the precession frequency (that is,
by comparison, its nutation frequency is small), the nuclear spin is affected only by 
the corotating component of the field. As a result, other planar components can be 
neglected, and a field oscillating in a constant direction in the plane has the same 
effect as an ideal resonant field.

Rotating frame. A frame rotating at the same frequency as the precession frequency of 
a spin. 

Rotation. In the context of spins and qubits, a rotation around σu by an angle θ is an 
operation of the form e–iσuθ/2. The operator σu may be any unit combination of 
Pauli matrices that defines an axis in three space. In the Bloch sphere representation,
the operation has the effect suggested by the word “rotation.”

Spectrum. In the context of NMR, the Fourier transform of an FID.
Weak measurement. A measurement involving only a weak interaction with the 

measured quantum system. Typically, the measurement is ineffective unless an 
ensemble of these quantum systems is available so that the effects of the interaction 
add up to a signal detectable above the noise. The measurement of nuclear 
magnetization used in NMR is weak in this sense. 
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The fact that the occurrence of symmetries in a physical system generally implies
the existence of conserved quantities and that these symmetries can be exploited
to ease the understanding of the system’s behavior is a well-known lesson in

physics. The notion of a noiseless subsystem (NS) (Knill et al. 2000) captures this 
lesson in the context of quantum information processing (QIP), where the challenge is to
protect information against the detrimental effects of noise. The link between symme-
tries, conserved quantities, and NS was discussed at length on page 216 of the article
“Introduction to Error Correction”. The essential message is that, by encoding informa-
tion into an abstract subsystem that corresponds to a preserved degree of freedom,
noiselessness is guaranteed even if errors still evolve the overall system’s state. 

Here, we focus on the NS of three spin-1/2 particles introduced in the above-
mentioned article (see page 201) , along with a discussion of the error-correcting 
properties of this NS. The physical system is composed of three qubits, subjected to a
“far-field” interaction with the environment, whereby the latter couples to the qubits
without distinguishing among them. The resulting collective-noise model involves all
possible error operators that are symmetric under permutation of the three particles and
is specified in terms of the error generators Ju = (σu

(1) + σu
(2) + σu

(3))/2, where u = x, y,
z. By recalling the meaning of the single-spin Pauli operators σu

k, the observable Ju
represents the projection of the total spin angular momentum J along the u-axis.
Because the total-spin observable J2 = J · J commutes with the error generators and z
defines the quantization axis, the eigenvalues j and jz of J2 and Jz, respectively, provide
useful quantum numbers to label basis states for the three particles. 
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Lorenza Viola and Evan M. Fortunato

Figure 1. Molecular Structure
of 13C-Labeled Alanine 
The diagram shows the three 
carbon-13 (13C) spins used as
qubits in the noiseless subsystem 
experiment as well as the relevant 
J-couplings between those qubits.



The NS of interest resides in the four-dimensional subspace H1/2 of the states carrying
total angular momentum j = 1/2 and having a total z-component jz = ±1/2. However, spec-
ifying j and jz does not suffice for completely labeling the states in H1/2: An additional
quantum number is needed for removing the two-dimensional degeneracy that remains.
Physically, this degeneracy simply means that there are two distinct paths for obtaining 
a total angular momentum j = 1/2 out of three elementary 1/2 angular momenta:

Let the additional quantum number l = 0, 1 label the two possible routes in the above
diagram. Because collective noise does not distinguish among the individual spins and
the final eigenvalue j is the same for both paths, the noise can neither distinguish the
realized value of l nor change that value. This conserved quantum number can be 
directly related to the eigenvalues sz = ±1 of the σz

(NS) observable of a noiseless qubit,
sz = 2l – 1. In general, noiseless qubit operators will remain invariant under rotations.
The simplest scalars under the rotations are the dot products s12 = σ(1) · σ(2),
s23 = σ(2) · σ(3), and s31 = σ(3) · σ(1). 

Thus, σu
(NS) observables for the noiseless qubit, where u = x, y, z, can be constructed

by combining s12, s23, s31, and the identity into three operators that “behave like” the
Pauli matrices (Viola et al. 2001a). A good choice is given by σx

(NS) = 1/2(11 + s23),
σy

(NS) = √3/6(s31 – s12), and σz
(NS) = iσy

(NS)σx
(NS), where projection onto the rele-

vant H1/2 subspace is understood. Note that the action corresponding to σx
(NS) is simply

a permutation exchanging the last two spins. (For an alternative construction of the NS
observables, see the article “Introduction to Error Correction,” page 216.) Identifying the
NS through its observables is equivalent to identifying it through the explicit state space
correspondence given in Equation (28) of the above-mentioned article. 

The experimental implementation of the three-qubit NS (Viola et al. 2001b) was 
performed with liquid-state NMR techniques. The three spin-1/2 carbon nuclei of 
carbon-13-labeled alanine were used as qubits (Figure 1). The information to protect
is an arbitrary one-qubit state, |ψ〉 = a|�〉 + b|�〉, where a and b are arbitrary complex 
amplitudes, and 〈ψ|ψ〉 = 1. This information is initially stored in spin 3, meaning 
that the three carbon spins are initialized in a pseudopure state corresponding to 
|�〉1|�〉2|ψ〉3 = |��ψ〉 = a|���〉 + b|���〉. A unitary transformation Uenc encodes this
input state into a superposition of the two basis states in H1/2 with j = 1/2 and jz = –1/2.
That is,

Uenc|��ψ〉 ↔ a|↓〉 · |�〉 + b|↓〉 · |�〉 = |↓〉 · |ψ〉 , (1)

where the subsystem representation of Equation (28) has been used.
The three qubits remain stored in the NS memory for a fixed evolution period tev,

during which errors can occur. In a given set of experiments, these errors are designed to
implement a desired collective-noise process Ecoll described by a set of error operators
{Ea}. Because of their collective nature, these errors affect only the syndrome subsys-
tem in the pair. Finally, following the evolution period, the unitary transformation Udec
decodes a generic noisy state Ea(|↓〉 · |ψ〉) in H1/2 back to the computational basis. 
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This procedure has the effect of returning the quantum state |ψ〉 onto qubit 2 upon dis-
carding (“tracing over”) spins 1 and 3,

Tr1,3{Udec[Ecoll(|↓〉〈↓| · |ψ〉〈ψ|)]U–1
dec} = |ψ〉2〈ψ| . (2)

Figure 2 is a sketch of the quantum network for the experiment. 
During the delay period between encoding and decoding, we use gradient diffusion

techniques to engineer a desired collective-noise process. In order to fully explore the
robustness properties of information encoded in the NS, we applied various error models
corresponding to noise along a single axis (see Figure 3), as well as more complicated
double- and triple-axis noise processes obtained by “cascading” the action of error mod-
els along different spatial directions, in sequence, within a single evolution period (see
Table I). To quantify the accuracy of the implemented NS in preserving the quantum
data |ψ〉, we experimentally extracted the entanglement fidelity Fe of the overall process
(including encoding, decoding, and engineered noise during storage), where Fe = 1
implies perfect preservation. 

Our results in Figure 3 and Table I indicate that, as expected, the effects of the
applied noise increase exponentially as a function of noise strength for unencoded (UN)
information but are largely independent of noise strength for information encoded in the
NS. That independence demonstrates that the NS functions as an “infinite-distance”
quantum error-correcting code for arbitrary collective errors. On the other hand, the Fe
is always about the same and less than 1 in all the NS experiments. The constant 
reduction in fidelity is suggestive of errors introduced during encoding and decoding
manipulations, as well as of noise due to natural noncollective relaxation processes 
during the whole experiment. � 
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quantum network for the three-
qubit NS experiment. The logi-
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Table I. Entanglement Fidelities for Engineered Collective Noise along Two
and Three Axes

Quantum Process Entanglement Fidelity (Fe)

Qzx
UN 0.24

Q00
NS 0.70

Qzx
NS 0.70

Qzy
NS 0.70

Q000
NS 0.67

Qyzx
NS 0.66

Q stands for the one-qubit processes implemented during each run.

Superscripts tell whether the system has been encoded or not.

Subscripts zx, zy, and yzx are for the axes along which noise processes with maximum
achievable strength were applied in cascade. Subscripts 00 and 000 indicate that no noise
was applied.

Two subscripts indicate shorter delay periods than three subscripts.

Statistical uncertainties in all Fe values are approximately 2%.
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F e = A1 exp(–tev//t) + B

A1 B Quantum Process

0.51 ± 0.04 0.43 ± 0.03   �� UN, y-axis noise

0.03 ± 0.03 0.64 ± 0.02   �� NS-encoded, y-axis noise

0.03 ± 0.03 0.62 ± 0.02   • NS-encoded, z-axis noise

Figure 3. Entanglement
Fidelities for Engineered
Collective Noise along a
Single Axis
The fidelity of UN information
subjected to engineered collec-
tive noise along the y-axis (red)
decreases exponentially with
noise strength τ–1 whereas the
fidelity of NS-encoded informa-
tion subjected to collective
noise along either the y-axis
(green) or the z-axis (black)
remains almost constant inde-
pendent of noise strength.
In each case, noise was applied
for a fixed evolution period tev
of approximately 44 ms.
The flatness of the curve inter-
polating the NS data demon-
strates the behavior of the NS
as an infinite-distance quantum
error-correcting code for 
single-axis collective errors of
arbitrary strength. The smooth
fits to the data are derived from
the exponential and parameters
displayed under the figure.



“…it seems that the laws of physics present no barrier

to reducing the size of computers until bits are the size of atoms,

and quantum behavior holds dominant sway.”

—R. P. Feynman, 1985

Quantum computation requires
a very special physical 
environment. Numerous

operations must be performed on the
quantum states of the qubits (or quan-
tum bits) before those states decohere,
or lose the interlocking phase relation-
ships that give quantum computation

its power. Thought to be an unavoid-
able outcome of the interaction
between the quantum state and the
environment, decoherence threatens
the life of a quantum system.

Any attempt at building a real
quantum computer therefore leads to
what some scientists refer to as the

yin-yang of quantum computation:
On the one hand, the qubits must
interact weakly with the environment
in order to limit decoherence. On 
the other hand, they must be easily 
accessible from the outside and must 
interact strongly with each other, or
else we could not manipulate the

Ion-Trap Quantum Computation
Michael H. Holzscheiter 
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quantum state, implement quantum
algorithms, and read out the result of
a calculation in a timely fashion. 
How can we hope to meet such con-
tradictory goals?

Ion-trap quantum computers, as
originally proposed by Ignacio Cirac
and Peter Zoller (1995), offer a possi-
ble solution to this dilemma. As its
name implies, an ion trap confines
charged particles to a definite region of
space with magnetic and electric fields.
In a specific realization of such a trap,
called a linear radio-frequency quadru-
pole (RFQ) trap, or a linear Paul trap
(Raizen et al. 1992, Walther 1994),
time-varying electric fields are used to
hold a line of ions in place—like pearls
on a string. These ions serve as the
physical qubits of the quantum com-
puter. Immobilized by the trapping
fields and confined inside an ultrahigh
vacuum chamber, they are effectively
isolated from the environment.
However, by addressing individual ions
with sharply defined laser beams, we
can initialize the computer, control the
qubit states during the operation of
logic gates, and read out the results at
the end of the computation. The inter-
action between the individual ions is
mediated by the Coulomb force
between the charged particles.

This article discusses the design
principles for isolating single ions in a
linear Paul trap (Paul et al. 1958),
whose operational principles are
described in detail. The individual ele-
ments of an ion-trap computer will be
introduced, and how to initialize,
manipulate, and interrogate the qubits
will be explained. Specific schemes
that were implemented in the quantum
computation project at Los Alamos
(Hughes et al. 1998) will illustrate the
descriptions. Ion-trap quantum compu-
tation is rapidly evolving, and numer-
ous groups around the world are
developing new ideas and experimen-
tal techniques. The reader will get a
flavor of this activity in the last section
of the article, which summarizes sev-

eral important results achieved within
the last few years: the on-demand cre-
ation of entangled states of up to four
ions by the National Institute of
Science and Technology (NIST) group
in Boulder, Colorado; the development
of a novel cooling scheme by a group
at the University of Innsbruck, Austria,
which would allow researchers to
quickly cool large numbers of trapped
ions with drastically reduced opera-
tional overhead; and the construction
of an effective defense against the
forces of decoherence.

The Physics of Ion Traps

Two basic types of devices can
confine charged particles to well-
defined regions of free space: Penning
traps and Paul traps. The Penning
trap, which was primarily developed
by Hans Dehmelt at the University of
Washington in Seattle, uses a strong
magnetic field and a static electric
field to create a nearly perfect three-
dimensional, harmonic trapping
potential (Dehmelt 1967). Some of the
most precise tests of fundamental
physical symmetries to date have been
conducted with this device, whose
operating principles are described in
the box “The Penning Trap” on the
next two pages. 

Although Penning traps nicely
solve the fundamental problems of
ion confinement, so far they have not
been used for quantum computation.
The trap’s strong magnetic field
causes ions to move rapidly in a 
circle (the cyclotron motion dis-
cussed in the box), whereas we want
the physical qubits to have as little
motion as possible. That is why the
favored trap for quantum computa-
tion is the Paul trap, in which there 
is no magnetic field and oscillating
electric fields (as opposed to static
ones) confine the ions. This device
was invented by Wolfgang Paul from
the University of Bonn in Germany,

who shared the 1989 Nobel Prize in
physics with Dehmelt.

Paul enjoyed telling the following
anecdote about how he hit upon the
idea for his device. Germans like soft-
boiled eggs for breakfast, and on a
particular Sunday morning, Paul had
prepared two eggs of different sizes
and had placed them on a serving tray.
When he started to walk, tray in hand,
toward the bedroom to surprise his
wife with breakfast in bed, the eggs
began to roll. He counteracted their
motion by shaking the tray and was
able to confine the larger egg to the
center by shaking with a particular
frequency and amplitude. (It was cer-
tainly not a well-defined harmonic
shaking.) The smaller egg, however,
kept rolling toward the edge, so Paul
changed amplitude and frequency and
successfully prevented this egg from
falling, at the expense of allowing the
larger one to wobble toward the edge.
Whether he ever reached the bedroom
with both eggs on the tray and enjoyed
a leisurely breakfast with his wife
remains unknown, but that morning
Paul realized not only the basic princi-
ple of the RFQ trap but also the mass-
selective feature of such an instrument.
At that time, he was keen on develop-
ing a mass filter for ions, that is, a
two-dimensional structure that could
transmit an ion with a specific 
charge-to-mass ratio and not any other
ratio. Eventually, Paul’s idea was used
to generate three-dimensional, mass-
selective confinement systems, but
Cirac and Zoller returned to the origi-
nal two-dimensional structure and 
proposed using it as the basis for a
quantum computer. 

The Linear Paul Trap. To under-
stand the linear RFQ trap, consider a
positively charged ion floating in free
space and surrounded by four infi-
nitely long conducting rods, as shown
in Figure 1. We can give one pair of
opposing rods a positive charge and
the other pair a negative charge
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The Penning Trap

Decades before individual ions were considered as candidates for qubits in a
quantum computer, experimental physicists were challenged to realize a simpler
Gedanken, or thought, experiment embodied by the statement often made by
theorists: “Consider a single (silver) ion in a uniform magnetic field” (Tanoudji
et al. 1977). Thought became reality in 1973, when Hans Dehmelt and his col-
leagues at the University of Washington in Seattle were able to capture a single
charged particle in a Penning trap. The ion that drifted into the central region of
that device was trapped by a strong, uniform magnetic field and by the electro-
static field produced by a set of specially shaped electrodes. The entire device
operated under ultrahigh vacuum to limit the interactions between the ion and
the background atoms. 

The University of Washington group refined the technique and used the trap to
confine a single electron (Wineland et al. 1973) and later a single barium ion,
using an RFQ Paul trap (Neuhauser et al. 1980), and performed precision spec-
troscopy on these systems. The special arrangement of fields caused the single
electron to behave as if it were bound to a nucleus for it displayed a set of
energy levels, or excited states, similar to those of the hydrogen atom. Dehmelt
therefore named his electron in a Penning trap “geonium—a single electron
bound to Earth.” The artificial geonium “atom” was, in a sense, closer to per-
fection than a real atom. The spacing between energy levels was nearly con-
stant because it reflected the trap’s nearly perfect harmonic-oscillator potential.
Dehmelt and coworkers used geonium to perform some of the most precise
tests of fundamental symmetries. In a more mundane fashion, Dehmelt called
the ion ASTRID (for “a single trapped ion dancing”). (Perhaps, if you keep an
ion or electron for such a long time, you may become attached to it.)

To understand the operating principles of the Penning trap, consider a charged
particle (ion) moving freely in space. To confine it to a specific spot in space,
we can apply electrical forces to its charge. If we place the ion between two
parallel conducting plates that are charged to an electric potential of the same
sign as the ion, the Coulomb repulsion will keep the particle from moving
closer to either plate (see Figure A). 

The ion can still move in directions parallel to the conductors. We can try 
to remove all escape routes by placing more conductors around the particle. 
But Michael Faraday discovered more than 150 years ago that an electric field
cannot penetrate a closed metal enclosure—hence, the penchant for science
museums to place a person inside a “Faraday cage” that is then exposed to 
violent lightning bolts. The courageous volunteer remains unharmed because
the lightning’s electric field vanishes inside the cage. Similarly, if we fully
enclose our particle in a cage of conducting plates, the electric field disappears,
and we lose the forces holding the particle from the walls. 

A more successful approach is to use the fact that an electric charge moving in
a magnetic field will experience a force perpendicular to the direction of both
the magnetic field and the particle’s velocity (the Lorenz force F = qv × B).
Therefore, if we apply a magnetic field perpendicular to our parallel conducting
plates (see Figure B), we force the ion onto a circular path around the magnetic
field line, closing off the sideway escape routes. 

Figure A. Electrostatic Forces
The positively charged particle is
repulsed by the capacitor plates but is
free to move anywhere in the horizontal
plane.

Figure B. Applying a Magnetic
Field
A magnetic field causes the ion to circle
around a field line (cyclotron motion),
thus confining the ion in the horizontal
plane.



Whereas the system shown in Figure B can confine charged particles (and has
been used for a number of experiments), the special character of the Penning
trap is given by the clever shaping and arrangement of the electrodes. As shown
in Figure C, two end caps shaped as hyperbolae of revolution replace the paral-
lel plates, and a ring-shaped center electrode defines the electrostatic potential
on the edge of the trap. 

The arrangement shown in Figure C not only leads to perfect confinement of
individual charged particles but also allows the motion of a trapped particle to
be separated into three independent harmonic motions. In order of decreasing
frequency, the three motions are (1) the fast “cyclotron” motion of the charge
around the magnetic field lines, (2) a slower oscillation in the direction of the
magnetic field that is due to the electrostatic repulsion from the two end caps,
and (3) a much slower drift motion that is due to the crossed electric and mag-
netic fields (see Figure D).

The drift motion is easily understood if one focuses on the cyclotron motion.
The positively charged particle is accelerated toward the negatively charged
ring electrode as it moves away from the electrical center of the trap. This
acceleration increases the radius of curvature for the outer half of the cyclotron
motion. As the particle moves back toward the center during the second half of
the cyclotron motion, it decelerates, and the radius of curvature decreases. The
net effect is a distortion of the circular cyclotron motion into a spiral that bends
around the electrical center of the trap, as seen in Figure E.

The harmonic motions account for the almost constant spacing between energy
levels in Dehmelt’s geonium atom, but this orderliness is hardly noticeable in
the roller-coaster-like motion of a trapped particle. If you actually want to expe-
rience the particle’s motion yourself, there is a carnival ride in which these
three components of motion are present—but watch your stomach!
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Figure D. Motion in the Penning
Trap
The three-dimensional motion of an ion
in the trap consists of three harmonic
motions: a fast cyclotron motion, a
slower up-down oscillation, and a slow
circular drift motion.
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Figure C. The Penning Trap
The two endcaps, which are hyperbolae
of revolution, replace the flat capacitor
plates. The central ring electrode helps
define the harmonic potential at the
center of the trap.

Figure E. Drift
Schematic of the drift motion that
results from the crossed electric (E)
and magnetic (B) fields.



(relative to some arbitrary “zero”
potential).1 The positive ion feels a
repulsive force from the positively
charged conductors and is pushed
toward the center of the trap. The ion
simultaneously feels an attractive
force due to the negatively charged

conductors and is pulled outwards.
If we now reverse the polarity of

our four electrodes, interchanging
plus for minus and minus for plus,
the ion’s motion will begin to
reverse. Where it was moving out, it
will now be moving in, and vice
versa. However, if the reversal takes
place quickly, the “heavy” ion 
cannot easily respond; it has too
much inertia to follow the fast
changes in the electric field exactly.

Instead, the ion will respond to 
the time-averaged electric field. 
If we switch the polarity of the 
electrodes at a few megahertz 
(or a few million times a second) 
by applying a radio-frequency (rf)
voltage and if the amplitude is 
correct, then the time-averaged field
generates a harmonic pseudopoten-
tial with its minimum located at 
the trap axis. The ion is pushed to
the bottom of the pseudopotential
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Figure 1. Principles of the Linear Paul Trap
(a) The linear Paul trap consists of four conducting rods.
Two opposing rods are connected to one pole of a radio-
frequency (rf) voltage source, whereas the remaining two are
connected to the other pole. The axis of symmetry between
the rods is the trap axis. (b) With the rods charged as shown,
the resulting electric force pushes a positive ion to the nega-
tive rods and repels it from the positive ones. (c) Half an rf
period later (see graph below), the polarity of all rods is
reversed, and the direction of the force also reverses.

(d) If the polarity changes fast enough, a heavy ion becomes
stuck in a rapid back-and-forth motion. Because the electric
fields are at a minimum at the trap axis, an effective force
pushes the ion toward the center, where it becomes trapped
(although it is still free to move along the axis). The blue
dots seen between the rods in part (a) represent a string 
of radially trapped ions. The string can be confined axially
when a positively charged electrode (end cap) is placed at
each end of the rods.
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1 For reasons discussed on the previous
two pages, all four conductors cannot be
positively charged, or the electric fields
within the trap would disappear.
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well and becomes trapped forever—
at least in principle—near the center. 

To generate the mass selectivity
sought by Paul, we add a positive
direct-current (dc) component to the 
rf voltage. Positive ions outside a cer-
tain mass range feel less of a restoring
force from the pseudopotential and
are kicked out of the trap by the repul-
sive dc field. This technique is one of
several that we can use to preferen-
tially retain qubit ions instead of, say,
a residual gas ion that may be present
in the ultrahigh vacuum trap. 

Of course, the ion’s motion is still
unrestricted in the direction parallel to
the trap’s axis. For confinement in this
third dimension, we simply add an
electric dc potential to a pair of “end
electrodes” that are on either side of
the region of interest. This axial field
plugs up the escape route along the
symmetry axis of the system, and 
the ion becomes trapped in three
dimensions. By substantially reducing
the ion’s energy (cooling), we coax 
the ion into lying along the central
portion of the trap axis, where the
radial and axial confining potentials
are at a minimum. If several very cold
ions are in the trap, then they all fall to
the center, and the mutual Coulomb
repulsion between the ions causes
them to line up neatly along the axis. 

Motion in the Trap. Although the
combination of rf and dc fields within
the trap drives the ion into a complex
radial motion, that motion is fully
described by a set of differential equa-
tions called “Mathieu’s Equations.”
The bound solutions of those equa-
tions yield a stability diagram that
allows one to evaluate the effective-
ness of the trap, given the values of
several critical parameters, such as the
amplitudes of the rf and dc compo-
nents of the voltage, the rf, the ion
mass, and the size of the trap
(Dawson 1976).

As long as we keep the values of
the critical operational parameters

within certain ranges, an ion will
remain bound to the axis of the device.
Furthermore, the magnitude of the
restoring force of the pseudopotential
holding the ions in the radial direction
will remain directly proportional to 
the distance from the center—the 
hallmark of a harmonic potential.2

In other words, to a good approxima-
tion, the ions will undergo harmonic
oscillations in the radial direction with
frequency ωr (or with frequency ωx
and ωy in case the potential is different
in the x- and y-directions). This motion
is commonly referred to as the secular
motion. 

The ions’ motion can become dis-
torted if the minima of the rf field and
the pseudopotential are misaligned
within the trap. Misalignment can
occur because of some small asymme-
try in the trap’s construction or
because of small dc patch potentials
on the electrode surfaces. Regardless
of the reason, misalignment will cause
the ions to lie “off center” (that is, off
the line where the rf field vanishes).
Those ions will experience the strong
gradient of the rf field and undergo
rapid oscillations—at the frequency of
the applied rf field—around their
time-averaged equilibrium position.
This so-called micromotion is the
main source of ion heating. We can
suppress the micromotion by adding a
compensating dc voltage to some of
the rf electrodes (or to auxiliary con-
trol electrodes) and thereby shift the
ions’ positions closer to the actual rf
center. 

In addition to exhibiting secular
motion and the unwanted micromo-
tion, an ion or, more important, a
string of ions will also vibrate in the
axial direction. The motion will be
harmonic because the dc voltage on
the end electrodes creates a harmonic

potential along some length of the
trap axis. The vibrations are similar to
those exhibited by a set of pendula
connected to each other by springs;
the swinging of one pendulum sets the
others in motion (see Figure 2).
Unlike vibrations of classical pendula,
however, the vibrations exhibited by a
string of ions are quantized; that is,
the amplitude of the motion depends
on the number of quanta (phonons) in
the vibrational mode. 

For N ions in a trap, there are 
N axial vibrational modes and an
additional 2N modes for motions
transverse to the axis. Each mode has
a distinct vibrational frequency. The
lowest-frequency (lowest-energy)
vibration is the so-called common
mode, in which the ions oscillate back
and forth in unison along the axis.
This mode figures heavily in the origi-
nal quantum-computing scheme of
Cirac and Zoller. Because all ions 
participate in the common-mode
oscillation, when we add (or remove)
a quantum of energy to this motion by
interacting with one of the ions, we
influence all other ions in the string.
Any two qubits, regardless of the dis-
tance between them, can therefore be
coupled together to perform logic
operations.

Other proposals make use of some
of the higher-frequency modes to 
couple qubits together (James 1998a).
These modes have more-complex
vibrational patterns and relatively
higher excitation energies than the
common mode, but it still takes very
little energy to excite them. Even a
string of very cold ions will vibrate 
in some intricate expression of the 
various modes, a problem that is
addressed in the discussion of ion
cooling. 

If only a few ions are confined in
the trap, the ions will align themselves
linearly along the axis. But increasing
the number of ions or increasing the
dc voltage applied to the end elec-
trodes introduces instabilities because
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2 To generate a pure harmonic potential,
the four electrodes should have hyperbolic
cross sections, but in practice we approxi-
mate that ideal shape with cylindrical rods.



the ions are effectively squeezed
closer together. The Coulomb 
repulsion between neighboring ions
becomes stronger than the radial
restoring force, and the ions start
buckling out into a zigzag pattern.
When even more ions are added, the
zigzag pattern develops into a com-
plex three-dimensional helical struc-
ture (Raizen et al. 1992, Walther
1991, 1994). Some of the ions will
move away from the axis and will
experience the strongest micromotion
heating—a situation clearly to be
avoided. We have studied this transi-
tion from linear to three-dimensional
structures in some detail (Enzer et al.
2000) and have quantified the parame-

ter space available for quantum 
computing in a linear RFQ ion trap. 

Elements of the Ion-Trap
Quantum Computer

In 1994, inspired by the great suc-
cess of ion traps in the field of preci-
sion measurements, Cirac and Zoller
proposed that the RFQ ion trap had
the right characteristics to support the
long sequence of precision operations
required for quantum computation. 
A string of ions trapped along the
symmetry axis of the trap would be
the quantum register of the computer.
Each ion could be addressed by

tightly focused laser beams, initial-
ized to an arbitrary state, manipu-
lated, and then probed at the end of a
calculation. Most important, the isola-
tion from the environment afforded
by the trap would allow for long
coherence times. 

One- and Two-Qubit Operations.
The logical qubit states |�〉 and |�〉 of
the ion-trap quantum computer must
be defined as they always are for any
quantum computer. (To stress that the
� and � used to designate the states
are notational and have no numerical
meaning, we have used a font differ-
ent from the one for the numbers 0
and 1.) We simply identify the ion’s
electronic ground state with the qubit
state |�〉 and a long-lived excited state
with the qubit state |�〉. 

We also want to apply a unitary
transformation to a single qubit,
that is, to implement a one-qubit gate,
and rotate the qubit in Hilbert space
to an arbitrary superposition of the
|�〉 and |�〉 states. (Two-level systems
and the rotation of a qubit in Hilbert
space are discussed in the article
“Quantum Information Processing”
on page 2.) To do so, we subject the
ion to a laser pulse of a specific
amplitude, frequency, and duration.
Assuming the ion is in its ground
state, the laser pulse will cause the
electron wave function of the target
ion to evolve to some superposition
of the ground and excited states. (We
cause the electron to undergo part of
a Rabi oscillation.) Illuminating the
ion with a so-called π-pulse, for
example, will evolve the electron
wave function through half a Rabi
oscillation period and leave the ion in
the excited state. The qubit would
have rotated from the |�〉 to the |�〉
state. If the duration of the pulse is
halved (a so-called π/2-pulse), the ion
would be left in an equally weighted
superposition of the ground and
excited states. The qubit would have
rotated to the 1/√2(|�〉 + |�〉) state.
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Figure 2. Vibrational Modes
A set of strongly coupled pendula can be used to envision the vibrational motion of
a string of ions in a harmonic potential. These vibrational modes affect all ions
simultaneously. If we set any one of the pendula in motion, the others will move.
Similarly, if we grab hold of any pendulum and stop it, all others will stop. (a) The
common mode (center-of-mass mode), in which all pendula swing one way and then
the other, has the lowest frequency (lowest energy) of all modes. Using this mode 
to couple two qubits together in the trap is the basis of the Cirac-Zoller proposal.
(b) The breathing mode, in which pendula at opposite ends move in opposite direc-
tions, has the next highest frequency. For an odd number of pendula, the middle
one does not move. This mode is less susceptible to heating by external noise
sources and has also been used to couple qubits. (c) Shown here is another higher-
order mode. In an ion trap, the ions can vibrate in three dimensions; for N trapped
ions, there are 3N vibrational modes.

(a) Common Mode

(b) Breathing Mode

(c) Higher-Order Arial Mode



While we can use laser pulses to
interact with each qubit separately
(and excite a qubit’s electronic, or
internal, degrees of freedom), we can
also use another laser to excite the
trap’s vibrational modes and hence to
interact with all qubits simultaneously.
The latter process can be viewed as
interacting with the qubits’ external
degrees of freedom. The state of a
string of j qubits in the trap is there-
fore explicitly given as

|q1, q2, … qj〉|n〉 . (1)

The first ket, |q1, q2, … qj〉, refers to
the logical qubit states, with qj = � or
�. The second ket, |n〉, refers to the
common-mode vibrational state, and
the value of n, say, 0, 1, 2, …, indi-
cates the number of phonons in the
common mode. (Although the string
of qubits may initially be in another
mode, we will restrict our attention to
the common mode.) Thus, in the state

|q1, q2, … qj〉|0〉 , (2)

the ions are not vibrating because
there are no phonons in the common
mode. In the state

|q1, q2, … qj〉|1〉 , (3)

the common mode contains one
phonon and all the ions are swaying
in unison along the trap axis. 

As mentioned earlier, the common
mode is used as a “bus” that couples
different ions together. To better
understand this coupling, consider
first that the frequency of the transi-
tion between the |�〉 state and the |�〉
state is ω0, and that the common-
mode vibrational frequency ω1 is
much lower than ω0. Similar to the
case of two coupled harmonic oscilla-
tors, the energy spectrum of the ion
exhibits resonances not only at the
“carrier” frequency ω0, but also at the
“sideband” frequencies ω0 ± ω1 (see
Figure 3). The resonance with the
higher frequency is commonly known
as the blue sideband; the one with the
lower frequency, as the red sideband.
For cold ions, the linewidth ∆ω0 of

the carrier transition is very narrow3

and is less than the energy difference
between the carrier and either side-
band. Thus, the sidebands and the car-
rier can be resolved within the cold
ion’s frequency spectrum. 

Now consider, for example, a pro-
cedure used to place two ions in an
entangled state. Assuming that the
ions are initially in the state |��〉|0〉,
if we were to address the first ion 
with a π-pulse from a laser detuned to
the blue sideband of the internal tran-
sition, both the internal and external
states of that ion would be excited.
Because an excitation in the common
mode is felt by both ions, the result
would be the two-qubit state |��〉|1〉.
If, instead, we address the first qubit
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Figure 3. Vibrational Sideband Spectrum
(a) An ion trap naturally couples an ion’s electronic excitations to its vibrational motion. Each electronic transition at resonant
frequency ω0, known as the carrier frequency, is therefore accompanied by other sideband transitions. We show the two side-
bands closest in frequency to the carrier: the lower-energy red sideband at frequency (ω0 – ω1), and the higher-energy blue side-
band at frequency (ω0 + ω1). A laser with a sufficiently narrow linewidth can interact with the ion via a specific sideband or the
carrier. (b) Interacting with a particular qubit (ion) via a sideband transition will change the qubit’s internal state and simultane-
ously the external state of all the qubits in the trap, either increasing the number of phonons in the common mode by one (exci-
tation on the blue sideband) or decreasing the number by one (excitation on the red sideband).

3 The metastable excited state has a very
long lifetime, which leads to a narrow
linewidth according to Heisenberg’s
uncertainty principle. To take an example
from the Los Alamos experiment, a cal-
cium ion excited to the 32D3/2 state will
decay to the ground state only after an
average delay of about 1 second, which
results in a transition linewidth of about
1 hertz. 



with a π/2-pulse (see Figure 4), both
qubits are placed in a superposition of
the two states, namely,

1/√2(|��〉|0〉 + |��〉|1〉) . (4)

We then address the second ion
(which is still in its ground state)
with a π-pulse tuned to the red side-
band. The laser energy is too low to
excite directly the ground-to-excited-
state electronic transition, but the
transition still occurs if extra energy
can be taken from the common
mode. The end result is that all
phonons have been removed from
the quantum register at the end of the
operation, and we create a two-qubit
entangled state:

1/√2(|��〉 + |��〉)|0〉 . (5)

We can no longer describe the system
as individual ions being in the ground
or the excited state. The result of a
measurement on one ion is strongly
correlated to the status of the other
ion. Notice that this procedure works
equally well if one or more ions are
placed in between the first and second
ions because the excitation of the
common mode is shared by all ions. 

Besides defining the individual
operations just described, Cirac and
Zoller also spelled out in detail the
steps needed to perform a “controlled-
not” (cnot) gate. In such an operation,
a “target qubit” flips its state only if a
second qubit, the “control qubit,” is
originally set to its logical |�〉 value.
Dave Wineland’s group at NIST first
implemented the cnot gate in an ion
trap in 1995 (Monroe et al. 1995),

albeit using only a single ion in the
trap. (The two states of the control
qubit were the two lowest-energy trap
vibrational states.) Still, because any
computation can be performed with a
number of two-qubit cnot gates,
together with some single-qubit gate
operations, the realization of a cnot
gate in a quantum computer is an
important benchmark.

Readout. At the end of any quan-
tum calculation, the individual qubits
in the quantum register will be in
defined states, which must be read out
with high fidelity. A powerful readout
tool makes use of the phenomenon of
quantum jumps (Sauter et al. 1986,
Bergquist et al. 1986). The readout
method is easily understood when one
examines the generic ion-level scheme
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The vibrational state is indicated by the position of the ions
on the rungs of a ladder in the harmonic potential well. In
this diagram, the electronic ground state of an ion is indi-
cated by a solid circle; the excited state, by an open circle.
(a) Suppose two qubits are initialized to the state |����〉|0〉.
Addressing the first qubit with a π-pulse from a laser tuned
to the blue sideband will excite the ions to the state |����〉|1〉.
The first ion is in its electronic excited state, while the 
second remains in its electronic ground state. Because 
the common mode affects all ions, both ions are excited 
to the |n = 1〉 vibrational state. (b) Two qubits can be 

entangled if we illuminate the first qubit with a π/2-pulse on
the blue sideband. The ions are placed in a superposition of
states: 1/√2(|����〉|0〉 + |����〉|1〉). If the second ion is then illumi-
nated by a π-pulse from a laser tuned to the red sideband,
it can absorb the photon only if energy is available from 
the vibrational mode. Thus, ion 2 is excited only if ion 1 
was excited; it remains in the ground state if ion 1 was in
the ground state. The two-ion system therefore exhibits 
the strong correlation of observables, which according to
Bohr, define the condition of entanglement. The end result
of the operation is the entangled state 1/√2(|����〉 + |����〉)|0〉.
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n = 0〉
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Figure 4. Using the Common Mode to Entangle Two Qubits 



shown in Figure 5. The ion has two
states that we identify as the logical
qubit states |�〉 and |�〉. But the ions
used for quantum computation also
have a short-lived excited state |s〉 that
is accessible from one of the qubit
states, the |�〉 state, by laser excita-
tion. When the laser drives the 
|�〉 —> |s〉 transition for a long period,
the ion fluoresces and emits a huge
number of photons. If that transition is
not accessible because the ion was in
the |�〉 state, there will be no fluores-
cence. Detection of a fluorescence
signal, therefore, tells us that the qubit
is in the |�〉 state, and we observe the
“jumps” of the ion between the |�〉
and the |�〉 state as distinct jumps in
the intensity of the fluorescence. 

This type of readout will destroy any
quantum information contained in the
qubit state and will yield a purely For
example, suppose the ion is in an equal
superposition of the states |�〉 and |�〉;
then probing the ion once with the laser
will not reveal the original state of the
qubit. If we want to get a reading on
the ratio of the two different states in a
superposition, we will have to repeat
the measurement multiple times and
resort to a statistical description. 

If we want to maintain the quan-
tum character of the ion’s state at the
end of a particular calculation, we
may resort to a different scheme.
Consider an ion placed in a high-
quality optical cavity, which is tuned
to the resonance of the internal transi-
tion in the ion. If the ion is in the state
|�〉, a photon is emitted into the cavity;
if it is in the state |�〉, no photon is
emitted. If the ion is in a superposi-
tion state, the photon field in the cav-
ity will end up in a superposition
between the states consisting of one
photon in the cavity and no photon in
the cavity. Thus, the quantum state of
an ion or an atom can be transferred
to a photon (Parkins and Kimble
1999, Mundt et al. 2002). This state
could be transferred through optical
fibers to a different trap and then

transferred into another ion—and so,
the quantum Internet is born! 

The Los Alamos Ion-Trap
Quantum Computing

Experiment

Currently, every implementation of
ion-trap quantum computing uses
qubits that are composed of two long-
lived internal states of the trapped
ions (the ground state and a
metastable excited state, or two hyper-
fine sublevels of the ground state) and
has the qubits communicating with
each other through the trap’s vibra-
tional modes. Many different ion

species can serve as qubits, and
numerous qubit schemes are possible.
While the previous section discussed
ion-trap quantum computers in gen-
eral terms, this section describes an
experiment developed at Los Alamos,
in which calcium ions were used. 

We initially chose to use calcium
for a number of reasons, including the
following: All the wavelengths needed
for cooling and manipulation are, at
least in principle, accessible by rela-
tively inexpensive diode lasers; the
lifetime of the metastable state allows
a reasonable number of coherent 
operations to be performed; and the
calcium isotope of interest is most
abundant and can easily be loaded
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s〉

�〉

Qubit 
transition

�〉
Readout
transition

Figure 5. Readout Using Quantum Jumps
(a) A generic three-level scheme for ions in a trap is illustrated. The qubit states |��〉
and |��〉 are typically the ground state and a long-lived excited state, respectively. The
state |s〉 is short lived and is coupled to the ground state. If the ion is in the ground
state, a laser can drive the |��〉 → |s〉 transition many times per second, and the ion
will fluoresce. If the ion “jumps” to the |��〉 state, there will be no fluorescence, so
that the presence or absence of a large fluorescence signal reveals the state of the
qubit. (Alternatively, one can use two long-lived ground-state hyperfine levels as
qubits and construct a similar readout scheme.) (b) This composite image shows
strings of calcium ions that were laser-cooled to near rest in the Los Alamos quan-
tum computation ion trap. The spacing between the ions is approximately 30 µm.
About 108 photons are absorbed and reemitted each second during the time the
readout laser is irradiating the ion. That photon flux is easily detectable with a
charge-coupled device (CCD) camera. The fluorescence is actually bright enough to
be seen with the naked eye, except that for calcium, the readout transition is at
397 nm and is outside the range of sensitivity for the human eye.

(a) Generic Three-Level System (b)



into the trap. But the basic quantum
computational schemes outlined 
earlier can be implemented with any
element that displays an ionic-level
structure similar to that of calcium,
such as the other alkali-earth elements
beryllium, magnesium, strontium, and
barium. At this stage of experimenta-
tion, all alkali-earth ions are essen-
tially interchangeable, and for mostly
technical reasons, calcium has
recently been replaced with strontium
in our quantum computing experi-
ment. (Some of that work is described
in the article, “Quantum Information
with Trapped Strontium Ions” on 
page 178.) In addition, other ions,
such as mercury and ytterbium,
also exhibit level schemes that are
applicable to quantum computation,
albeit with slightly different technical
approaches. As ion-trap quantum
computers become more sophisti-
cated, the choice of ion species will
become a larger issue. 

Our trap is a linear Paul trap, about
1 centimeter in length and 1.7 mil-
limeters in diameter, with a cylindrical
geometry, as seen in Figure 6(a). 
We create the strong, radial confine-
ment fields by applying a few hundred
volts of rf amplitude at approximately
8 megahertz to two opposing rods.
The remaining two rods are 
rf-grounded. The axial confinement,
which prevents the ion from leaking
out of the trap along the symmetry
axis, is produced by a direct current of
about 10 volts applied to each of the
conical end caps. This combination of
the rf and dc fields leads to an axial
oscillation frequency ω1 for the com-
mon mode of a few hundred kilohertz
and a radial oscillation frequency of
ωr ≈ 1 megahertz. 

Additional dc potentials can be
applied to four support rods, which
are not shown in Figure 6(a) but are
located outside the actual trap elec-
trodes. In this way, one can center
the ion string on the electrical sym-
metry axis of the trap and thus mini-

mize the amount of heating produced
by micromotion. 

Figure 6(b) shows a schematic 
diagram of the internal-level structure
of calcium ions and gives the wave-
lengths of the relevant transitions.
(Any other alkali-like ion would have
a similar structure.) The 42S1/2 ground
state and the metastable 32D5/2 excited
state are used to form the logical qubit
states |�〉 and |�〉, respectively. The
metastable excited state has a lifetime
of about 1 second, which is long
enough to allow an interesting number
of computational steps to be per-
formed before decoherence (resulting

from spontaneous emission from the
excited state) can destroy the internal
state of the quantum register. 

To load the ions into the trap, we
cross a beam of calcium atoms that is
produced by heating a small calcium-
filled reservoir with a beam of elec-
trons emitted by an “electron gun.”
(The electron gun is essentially identi-
cal to the one inside a computer moni-
tor or a television screen.) These two
beams are aligned so that they cross
each other within the effective volume
of the trap, that is, within the cylindri-
cal volume that fits between the four
rods and the two end caps. The atoms
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Figure 6. The Los Alamos Linear Paul Trap 
(a) The trap built at Los Alamos for quantum computation is about 1 cm in length
and 1.7 mm in diameter. An electric field of a few hundred volts oscillating at 8 MHz
is applied to two of the conducting rods. The other two rods are RF grounded.
About 10 V of a direct current is placed on the conical end caps. (b) This illustration
shows a partial energy-level diagram for calcium (not to scale) and shows the wave-
lengths of some transitions relevant to our quantum computing scheme. The qubit
transition is shown in red.
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that are ionized by electron impact
suddenly feel the confining forces of
the electric fields and become trapped. 

Cirac and Zoller (1995), as well as
other authors, proposed initializing the
computer in the state

|�� … �〉|0〉 ; (6)

that is, all qubits are in their electronic
and vibrational ground states.
However, the temperature4 of the
newly trapped ions is very high, since
their energy is given by a combination
of the temperature of the calcium
oven and the energy imparted to the
ion by the electric field. (The latter
energy varies, depending on where the
ionization occurs.) In order to reach
the initial state and then to perform
quantum logic operations, the ions’
temperature must be reduced to its
lowest possible value. Cooling the
ions takes place in two steps described
in the next two sections.

Doppler Cooling of Calcium Ions.
As its name suggests, this first cool-
ing step makes use of the Doppler
effect, whereby the relative motion
between a source and an observer
causes a change in the observed fre-
quency of an acoustic or electromag-
netic wave. For example, the sound of
a siren on an ambulance or a police
car changes its pitch depending on
whether the vehicle moves toward
you or away from you. Similarly, an
ion or atom will absorb or emit 
photons of different frequencies
(energies), depending on its motion
relative to the light source. Although
an ion in the trap is localized by elec-
tric fields and its average velocity is
zero, the variation of the instanta-
neous velocity, as the ion jiggles back
and forth due to thermal motion,
causes the inherent emission and/or

absorption profile of an ionic transi-
tion to become much broader than 
the natural linewidth of the transition
(second-order Doppler broadening).
For “hot” ions, the Doppler-broad-
ened linewidth is typically much
greater than the laser linewidth. 

To implement Doppler cooling, we
tune a laser to a frequency below the
resonance frequency of a transition in
the ion (Figure 7). Only when it is
moving at a certain velocity toward

the laser can the ion absorb these 
“off-resonance” photons, because only
then does it “see” the laser frequency
shift into resonance. However, as a
result of its random jiggling, the ion
has a probability to emit photons at
any frequency within its Doppler-
broadened emission line profile. One
can easily see from Figure 7 that the
ion has a greater probability to emit a
photon with a higher frequency than
the absorbed photon. On average,
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Ion at rest “sees” frequency    . 

Doppler-broadened
emission profile

Ion moving into the laser with velocity v “sees” 
   frequency    + =    (1 + v/c). 

Ion moving out of the laser with velocity v “sees” 
   frequency    – =    (1 – v/c). 

(a)  Frequency Shifts Due to the Doppler Effect

Laser Ion

(b) Detuning (c) Doppler Cooling of Calcium
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Figure 7. Doppler Cooling of Ions
(a) When interacting with a laser of frequency ω, an ion at rest sees the native laser
frequency. If the ion is moving, this frequency is shifted by the Doppler effect. An ion
moving into the laser beam “sees” the laser frequency Doppler-shifted toward a
higher frequency, ω+, while the ion moving in the direction of the laser beam “sees”
the frequency ω–. (b) This first-order Doppler effect is eliminated in ion traps because
the average velocity is zero. However, because of its thermal motion, the ion has a
probability to absorb photons at any frequency within its Doppler-broadened absorp-
tion profile. Similarly, it has a probability to emit a photon over a range of frequen-
cies within its emission profile. Suppose the laser is tuned below the ion’s resonance
frequency ω0 so that ω < ω0. When the ion moves into the laser beam, it will absorb a
photon because it sees the laser frequency Doppler-shifted close to its resonance
frequency (ω+ ∼ ω0). The ion absorbs a laser photon of energy E = hhω < hhω0, but on
average it reemits a photon with higher energy (from the gray region). Because it
loses energy during each cycle of absorption and emission, the ion cools rapidly to
the limit of this method, which is imposed by the recoil energy the ion experiences
upon reemission of the photon. For typical parameters of our trap, calcium will
reach a vibrational level of approximately |n = 10〉 to |n = 30〉 at the end of the Doppler
cooling. (c) The transitions used to Doppler-cool calcium ions are shown.

4 We often refer to ion temperature 
rather than energy because the ions show
a distribution of energies over time.



more energy is emitted than absorbed,
which leads to a cooling of the ion. 

For rapid cooling, a large number
of photons must be absorbed and
emitted, and therefore Doppler cool-
ing is performed on a transition that
can be cycled rapidly. We use the
397-nanometer transition from the
42S1/2 to the 42P1/2 state. The lifetime
of the 42P1/2 state is about
10 nanoseconds, so the ion can absorb
and reemit about 108 photons per 
second. Unfortunately, the 42P1/2 state
has a chance of roughly 1 in 15 to
decay into the metastable 32D3/2 state,
which has a lifetime of about 1 sec-
ond. The ion then takes so long to
return to the ground state that it would
be lost from the cooling cycle. To
avoid this outcome and force ions to
return from the D3/2 level to the cool-
ing cycle, we irradiate the ion with
two lasers: the cooling laser at
397 nanometers and a “repump” laser
at 866 nanometers. 

Doppler cooling has its limits.
Conservation of momentum guaran-
tees that, after emitting a photon in
one direction, the ion recoils in the
opposite direction. Although this
recoil energy is small, eventually it
counteracts any cooling effects. For
calcium ions, the Doppler limit is
equivalent to a temperature of about
3 microkelvins. At that temperature,
the kinetic energy of the ions is signif-
icantly less than the mutual Coulomb
repulsion between ions. Essentially,
they do not have enough kinetic
energy to leap-frog each other, so the
cold ions remain frozen in their rela-
tive locations and form a string. The
photos in Figure 4 are examples of ion
strings that were realized in our trap.
At a 200-kilohertz common-mode 
frequency, the spacing between ions 
is about 30 micrometers. 

Even at a temperature of
3 microkelvins, however, the ions
have enough energy to occupy any of
several vibrational modes, with many
phonons per mode. (The specific dis-

tribution of states depends on the
ions’ temperature and the frequency of
each mode.) Here, we will restrict our
attention to the common mode. After
Doppler cooling, the ions in the trap
can typically occupy the states from
|n = 10〉 to about |n = 30〉. Getting the
qubits into the common-mode ground
state (|n = 0〉), therefore, requires an
additional cooling scheme. 

Sideband Cooling of Calcium.
We recall that ions in the trap can
couple their internal degrees of free-
dom with their external motion, which
leads to sidebands at ω0 ± ω1, where
ω1 is the common-mode frequency, in
the absorption spectrum. For cold ions
with a minimal Doppler linewidth,
these sidebands are resolvable from
the carrier—see Figure 8(b). Thus, an
ion can absorb photons not only at the
carrier frequency ω0 of their internal
|�〉 → |�〉 transition but also on the
upper and lower sidebands at the 
frequencies ω0 ± ω1. 

Assuming all ions are in the state
|�〉|n〉, we can tune a laser with a suitably
narrow linewidth to the red sideband—
photon energy [E– = h(ω0 – ω1]—and
excite one of the ions to the state 
|�〉|n – 1〉. In essence, energy is removed
from the vibrational mode (the occupa-
tion number is reduced by one phonon)
and is used to make up the deficit in
photon energy. After its radiative life-
time, the ion can decay to one of three
states: the state |�〉|n – 2〉, by emitting a
photon with energy [E+ = h(ω0 + ω1];
the state |�〉|n – 1〉, by emitting a photon
with energy [E0 = hω0]; or a return to its
initial state, by emitting a photon with
energy [E– = h(ω0 – ω1]—see Figure
8(c). On average, the ion loses one
vibrational photon of energy E = hω1
for each excitation–decay cycle.
Because we started somewhere around
|n = 30〉, we need about 30 cycles to
bring the vibrational mode to its ground
state(provided there are no competing
effects that heat the ions while they 
are being cooled).

Unfortunately, the long lifetime of
the 32D5/2 state is now a hindrance. 
In principle, we can scatter only one
photon per second using this transi-
tion, which would render the process
of cooling from |n = 30〉 to |n = 1〉
unacceptably slow. Heating processes
—micromotion heating or simply
radiative heating from other noise
sources in the system—are much
faster, and we would be unable to
reach the desired starting point of 
all qubits being in the internal and
external ground states. 

To speed things up, we artificially
shorten the lifetime of the 32D5/2 state
by introducing an alternate decay route
via the 42P3/2 state (Marzoli et al.
1994). We irradiate the ion not only
with a laser tuned to 729 nanometers
(to drive the S–D transition), but also
with a second laser tuned to
854 nanometers—see Figure 8(d). 
The second laser pumps the ion from
the D- to the P-state, from which the
ion rapidly returns to the ground state.
By carefully choosing the amplitude
of the 854-nanometer laser, we can
design the effective lifetime of the
32D5/2 state according to our needs,
and our calcium ion can jump down
the ladder of harmonic-oscillator 
levels in just 3 to 30 milliseconds. 

In a real system, the cooling power
from the lasers will always be in com-
petition with external heating
processes. Although no clear theoreti-
cal explanation of these processes has
emerged, many possibilities have been
discussed in the literature, and the rele-
vant scaling laws with trap parameters
have been developed (James 1998b).
Typical candidates—besides micromo-
tion heating, which can be avoided by
carefully tuning the trap voltages—are
fluctuating contact potentials on the
trap electrodes (originating from insu-
lating deposits on the electrodes),
which have a frequency component at
the trap’s resonant frequency. 

In the absence of a proper theoreti-
cal description of ion heating, we can
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turn to empirical data accumulated
from a number of different experi-
ments. The adopted procedure is to
cool the ions to as low a temperature
as possible and then turn off the lasers
responsible for the cooling. After a
variable delay time, we measure the
ion’s temperature using sideband
spectroscopy. Quentin Turchette and
coworkers (2000) conducted the most
complete study of this type when they
looked at heating effects in traps of
different sizes. The separate traps had
also undergone different preparation 
“rituals.” The studies suggest a strong
dependence on trap size, that is, on
the distance between the ions and the
trap electrodes. When the studies are
combined with observations made by
Rainer Blatt’s group at the University
of Insbruck, one is led to believe that
“bigger is better.” But Ralph deVoe
with IBM has recently reported that
hardly any heating was observed over
a short period in a miniaturized trap. 

Clearly, we have much to learn
before we can understand the heating
of ions in rf traps. The comforting
thought is that, in all cases, the time
scale for heating from the ion’s
ground state can be kept long, com-
pared with the time required for a 
reasonable number of quantum
manipulations. Furthermore, heating
times are typically longer than times
for other decoherence processes. 

Readout of the Calcium Ion.
We use the |s〉 = 42P1/2 excited state 
in calcium for readout, the same state
that is used for Doppler cooling. As
discussed earlier, this state has a life-
time of only 10 nanoseconds and is
accessed from the ground state by a
laser tuned to 397 nanometers. An 
ion in the |�〉 state will absorb and
reemit about 108 photons per second
when the laser drives the |�〉 → |s〉
transition. (Because the 42P1/2 state
can also decay to the long-lived
32D3/2 state, we simultaneously 
irradiate the ion with a laser tuned to 
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Figure 8. Sideband Cooling 
(a) This partial energy-level diagram shows the transitions we use for sideband
cooling of calcium ions. (b) When the linewidth of the carrier transition (frequency
ω0) is very narrow and the Doppler broadening is minimal, the ion’s vibrational side-
bands can be resolved. (c) The figure shows several vibrational levels for the 
|��〉 → |��〉 carrier transition. If a single ion is initially in the state |��〉|n〉, then illuminat-
ing the ion with a laser tuned to the red sideband will excite the ion to the state
|��〉|n – 1〉. The latter state will decay to |��〉|n – 2〉 or |��〉|n – 1〉, or it will go back to |��〉|n〉.
On average, the number of phonons in the mode decreases by 1 after each excita-
tion/emission. (d) The lifetime of the upper level may be artificially shortened if that
level is coupled to an auxiliary one with a higher decay rate. The faster decay will
increase the cooling rate.

1 0 1

D
D

D
D

D

S
S

S
S

n – 3– 〉 n – 2– 〉 n – 1– 〉 n〉n

n – 3– 〉 n – 2– 〉 n – 1– 〉 n〉n

D
D

D

S
S

S
S

P
P

P
P

�〉

�〉

�〉

�〉

Sideband cooling

nm854 n

32D5/2

42P3/2

42S1/2

393 nm

0 29 nm= 72

(a) Sideband Cooling Transitions

(c) Stepping to Lower Vibrational States

(d) Increasing the Cooling Rate

(b) Resolved Sideband Structure

�〉

�〉

ω 0ω
ω ωω ωω1ω0ωω



866 nanometers to return the ion to
the 42P1/2 state.) Even with a modest
photon-collection efficiency of about
10–4, which is due to experimental
considerations (we cannot bring a lens
too close to the ions without blocking
access to the trap), we can easily
detect the photons scattering from the
ion with a charge-coupled device
(CCD) camera. 

In Figure 9, we show a sample trace

of the detected photon counts for a sin-
gle ion in the trap. The fluorescence
signal is nominally about 104 counts
per second. We randomly excite the
ion with a laser tuned to 729 nanome-
ters, and each time it “jumps” from the
|�〉 state to the |�〉 state, the signal dis-
appears. Figure 9 also shows the fluo-
rescence from a set of two ions. The
different levels of intensity are for both
ions being excited (no fluorescence),

for one of the two ions being excited
(intermediate fluorescence), and
finally, for both ions being in the
ground state (full fluorescence).
Although it is easy to distinguish
among these cases, determining which
of the two ions is in the ground state
for the intermediate fluorescence level
is difficult. We must look at the ions
individually, by focusing the laser on
one ion at a time, and then convert to
the single-ion measurement. 

Ferdinand Schmidt-Kaler and his
colleagues from the Innsbruck group
have used this readout technique with
three ions, which were spaced at
about 6 micrometers from each other
in the trap. They cooled the ions to
the |���〉|n〉 state, and all three were
emitting photons on the readout tran-
sition. The scientists then pointed a
sharply focused laser at 729 nanome-
ters onto one of the ions and placed it
in the |�〉 state (the dark state). The
measured crosstalk among neighbor-
ing ions was less than 1 percent, so
the state of the chosen qubit could be
determined with about 99 percent
fidelity (Nägerl et al. 1999). 

Important Developments

A Popular Mechanics article from
1949 stated, “Where a calculator on
the ENIAC (electronic numerical
integrator and calculator) is equipped
with 18,000 vacuum tubes and
weighs 30 tons, computers in the
future may have only 1000 tubes and
weigh only one and a half tons.” That
observation did not turn out to be
entirely correct. How could anyone
have foreseen the development of
transistors and integrated solid-state
circuitry or the remarkable parallel
developments that have culminated in
today’s supercomputers? 

We are still in the “vacuum-tube”
era of quantum computation, and if
asked two years ago about the future
of ion-trap-based quantum computers,
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Figure 9. Readout of Qubits 
(a) Shown here are the readout transitions for calcium. (b) For this readout experi-
ment, a single ion interacts with two lasers: a low-intensity laser that drives the
qubit transition |��〉 → |��〉 and a second laser that drives the readout transition 
|��〉 → |s〉. The fluorescence signal from that transition, nominally around 
4,000 counts per second, is recorded with a simple rate meter. When the qubit is in
the |��〉 state, we can drive the readout transition, but if the ion occupies the state |��〉,
the fluorescence disappears. We can distinguish between the |��〉 and |��〉 states with
nearly 100% fidelity. (c) The state of two ions can also be distinguished. No count
corresponds to the state |����  ��〉; 8000 to 10,000 counts per second correspond to the
state |��, ��〉; 4000 counts per second, to either |����〉 or |����〉. (In the last case, our experi-
mental setup does not allow us to distinguish between the two states.)



I would have been hesitant to promise
much.  I may have argued that the
systems we were looking at were
mere demonstrations, designed to help
us understand the fundamental
physics issues behind qubits and that
the prospects for scaling these devices
up to a larger number of qubits were
doubtful. Even today I could argue
that, while the computing scheme of
Cirac and Zoller is in principle scala-
ble (Hughes et al. 1996), it has yet to
be realized with two qubits.

However, because much has hap-
pened in the ensuing two years,
included here are descriptions of just a
few of the many important develop-
ments that have put the ion-trap 
quantum computer back on the track
for scalable technologies. Similar to
the transition from vacuum tubes to
solid-state devices (even if not quite as
fundamental), these developments do
not invalidate any of the previous

achievements and underlying princi-
ples but are unpredicted and significant
enhancements of available technology.

Four-State Entanglement. To
take full advantage of the power of
quantum computation, we need to
generate entanglement between an
arbitrary number of qubits. But 
generating any entangled state is dif-
ficult. In the case of photons, entan-
glement is achieved by means of a
statistical process. Many pairs of pho-
tons are created by a method known
as parametric down-conversion,
whereby a high-energy photon, after
entering a special type of crystal, has
a certain probability to convert into
two photons, each with half the initial
energy. In a few cases, two photons
emerge in an entangled state. 
(See the article “Quantum State
Entanglement” on page 52.) We can
typically produce about 1000 entan-

gled pairs per second, but if we look
for entanglement of three or even four
photons, the likelihood of finding
such a state becomes unacceptably
small for practical purposes (30 per
second for 3 photons and a few per
year for four photons). 

Thus, quantum computing took a
leap forward when the NIST team in
Boulder demonstrated that it could
produce an entangled state of up to
four ions “on demand” (Sackett et al.
2000). Based on a proposal by Anders
Mølmer and Klaus Sørenson (1999)
from the University of Aarhus in
Denmark, the NIST team around
Chris Monroe and David Wineland
demonstrated the feasibility of entan-
glement of two and four ions in a
deterministic way. With a single-pulse
operation of two lasers, the desired
state could be produced with a high
degree of certainty. 

To understand the technique, con-
sider two spin-half particles confined
in a harmonic well and coupled by
vibrational degrees of freedom. (The
spin description is equivalent to our
previous picture of two internal states
in an ion.) The NIST group used the
two ground-state hyperfine levels of
9Be+ ions as an effective spin-half
system, with |↓〉 = |F = 2, mF = –2〉
and |↑〉 = |F = 1, mF = –1〉. The energy
levels of the system are shown in
Figure 10, where hω0 is the internal
energy splitting of each particle and ν
is the oscillation frequency of the par-
ticular collective mode of the particles
in the trap. 

The group used standard laser-
cooling and optical-pumping tech-
niques to prepare the particles in their
spin-down internal state and in the
ground state of their collective
motion: |Ψ〉 = |↓↓〉|0〉. Laser pulses at
ω0 + (ν – δ) and ω0 – (ν – δ), where 
δ is the detuning from the resonance
(refer to Figure 10), then drive the
two-step transition from |↓↓〉|0〉 to
|↑↑〉|0〉. If the detuning δ is sufficiently
large, the intermediate states |↑↓〉|�〉
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Figure 10. Four-Particle Entanglement
The figure shows the relevant energy levels and transition frequencies used to cre-
ate deterministic multiparticle entanglement. A two-ion scheme is illustrated. The
|↑↑〉|0〉 excited state has an energy of 2E0 = 2hhω0. The |↑↓〉|1〉 and |↓↑〉|1〉 excited states,
in which the internal state of one of the ions is excited and both ions go into a
vibrational excited state, has an energy E1 = hh(ω0 + ν). Lasers tuned to energies 
E1 + δ and E1 – δ, where δ is a predetermined laser detuning, can directly excite the
ions to the |↑↑〉|0〉 state. Pulsing the two lasers for a time t = π/(2Ω), where Ω is an
effective Rabi frequency, will place the ions in the entangled state 
|Ψ2〉 = 1/√2(|↑↑〉 – i |↓↓〉). The scheme can be generalized to any number of ions and
has been used to create entangled states of up to four ions.
(Figure reproduced with permission from Nature.)
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and |↓↑〉|�〉 are negligibly occupied,
and no motional excitation occurs in
the process. Applying the laser fields
for a time t = π/(2Ω), where Ω is the
Rabi oscillation frequency for the
transition, results in the final wave
function

|Ψ2〉 = 1/√2 (|↑↑〉 – i |↓↓〉)  , (7)

which is the desired maximally
entangled state.

It turns out that this process is
entirely scalable for an even number
of N qubits and can generate the
N-particle entangled state

|ΨN〉 = 1/√2 
× (|↑↑...↑〉–iN+1|↓↓...↓〉) . (8)

If N is an odd number, the state
|ΨN〉 can still be produced, provided
one rotates each qubit independently.
The NIST scientists have used this
method with two and four ions in the
trap, but they also caution that the
experimentally realized states |Ψ2〉
and |Ψ4〉 are not fully entangled. Each
state shows some degree of decoher-
ence. Although the amount of deco-
herence in |Ψ4〉 was more than what
could be tolerated for quantum com-
puting, the achievement of reliably
creating a four-particle entangled state
on demand cannot be underestimated. 

In a later development, the NIST
group showed that the maximally
entangled states of a pair of trapped
9Be+ ions could be used as a decoher-
ence-free subspace for protecting one
qubit of information against dephas-
ing errors (Kielpinski et al. 2001). The
decoherence-free subspace, also called
a noiseless subsystem, is spanned by
the two orthogonal states

|Ψ+〉 = 1/√2 (|↓↑〉 + i |↑↓〉)  , and 

|Ψ–〉 = 1/√2 ( |↓↑〉 – i |↑↓〉)  . (9) 

These states serve as the logical qubit
for storing information. It is easy to

see that all superpositions of these
maximally entangled states are invari-
ant under transformations that apply
the phase change |↑〉 → eiς|↑〉 simulta-
neously to both ions. This so-called
collective dephasing is thought to be 
a major source of decoherence for
trapped ions. 

In the NIST experiment, an arbitrary
state of one qubit was encoded in the
decoherence-free subspace of two ions:

α|↑〉 + β|↓〉 → α|Ψ+〉 + β|Ψ–〉 .(10)

The encoded information was sub-
jected to engineered dephasing errors
or ambient errors, and then the encod-
ing procedure was reversed to recover
the original information. The data
showed unequivocally that the noise-
less subsystem protects the informa-
tion from collective dephasing errors
for a time up to ten times longer than
the typical decoherence time and that
collective dephasing is indeed a major
source of errors in ion traps. One
could imagine that this type of robust
storage might enable the operation of
a quantum computer constructed from
an array of ion traps as opposed to a
single trap. (For an introduction to the
theory of noiseless subsystems, see
the article “Introduction to Quantum
Error Correction” on page 188. A
nuclear magnetic resonance experi-
ment demonstrating noiseless subsys-
tems is presented in the article
“Realizing a Noiseless Subsystem in
an NMR Quantum Information
Processor” on page 260.) 

Broadband Cooling. The second
important recent result is the selective
enhancement of the probability of
cooling ions by electromagnetically
induced transparency (EIT). The
scheme of Cirac and Zoller has the
qubits coupled together by means of
the common vibrational mode, in
which all ions oscillate back and forth
in unison along the trap axis.
However, even two trapped ions have

an extra degree of freedom in the
axial motion, namely, the breathing
mode, in which ions on opposite sides
of the string move 180° out of phase
(refer to Figure 2). Each additional
ion opens up three more vibrational
modes to the ion string. Every mode
of frequency ν can be assigned an
average quantum number nν.

The initial scheme of Cirac and
Zoller requires a mode to have nν = 0
in order to be used for computational
operations. For small numbers of ions,
we reach this state by the standard
sideband-cooling methods discussed
earlier. As seen in Figure 11(a), the
ion has a number of transition possi-
bilities: Excitation on the lower side-
band will cool the ion, excitation on
the upper sideband will cause heating,
and transitions on the carrier will
cause diffusion. In sideband cooling,
we use an ultranarrow laser and 
excite only the lower sideband so 
that |n〉 → |n – 1〉. 

For a large number of qubits, how-
ever, the sheer number of higher
modes makes it technically difficult,
if not impossible, to use standard 
sideband-cooling methods. Not only
would we have to identify and excite
the lower-sideband transitions for
each and every mode, but the spec-
trum becomes so “dense” that the
upper sidebands of a neighboring
internal transition can overlap the
lower sidebands of another. Cooling
one mode could actually heat another.
Furthermore, the “overhead” needed
to control and cool these modes is
daunting: large numbers of laser
pulses, constant retuning of the lasers
from one mode to the next, and tight
control of the qubit register through-
out the cooling stage. 

For efficient (and simultaneous)
cooling of more than one mode,
broadband cooling would be required,
even though that would seemingly
exacerbate the problem of unwanted
excitation. But recent work by Blatt’s
group at the University of Innsbruck
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may make broadband cooling possible
(Morigi et al. 2000, Roos et al. 2000).
The group adopted the EIT technique
to selectively enhance the probability
of exciting cooling transitions rather
than heating transitions in the ion. 

The necessary asymmetry between
lower and higher sidebands can be
achieved as follows: Consider a three-
level system with two lower levels
and one shared excited state—see
Figure 11(b). Using a strong coupling
laser between one of the ground states
and the upper state creates so-called
light shifts (that is, shifted energy lev-
els, as seen by another probe laser).
For a detuning of the coupling laser
above the resonance, a probe laser
sees an absorption profile that shows
zero absorption for a detuning equal
to the coupling laser, the so-called
Fano profile—see Figure 11(c).
Therefore, such a probe would be
transparent for that exact detuning—
the EIT phenomenon. In order to
obtain optimum cooling using these
EIT resonances, the detunings are
chosen such that the carrier transition
is exactly located at the EIT resonance

(that is, it is not excited at all because
of that quantum interference), and the
maximum absorption is chosen to be
around the lower sideband frequency. 

Because the absorption profile
generated in this manner is fairly
wide (much wider than the natural
width of the transition used for tradi-
tional sideband cooling), the asym-
metry between heating and cooling
transitions exists for many modes.
Several different modes can be
cooled simultaneously with a single
operation. This technique reduces
the overhead for laser-cooling of
multi-ion strings and also eases the
requirements for laser stability,
which are very strict for standard
sideband cooling. 

To show that EIT cooling can
simultaneously cool vibrational
modes with significantly different fre-
quencies of oscillation, the Innsbruck
group chose to cool the axial mode
and the radial mode of a single ion
confined in a three-dimensional Paul
trap at 3.3 megahertz and 1.6 mega-
hertz, respectively (Schmidt-Kaler et
al. 2001). In a linear trap, the nearby

modes (“spectator” modes) are not
used for the computation directly;
they are coupled to and may affect the
common mode. The group achieved
ground-state populations of 73 per-
cent for the axial and 58 percent for
the radial mode. Although this result
is certainly not as satisfactory as that
achieved by sideband cooling
(because of the smaller absorption
asymmetries), it is certainly sufficient
for cooling (and thus suppressing)
those modes. The EIT method 
promises the possibility of cooling 
all spectator modes of a multiqubit
quantum register with a single 
operation. That would allow the more
elaborate (individual) sideband 
cooling scheme to be used on only 
the mode needed for calculations. 

Outlook

Many systems have been proposed
in the last several years as potential
candidates for becoming quantum
computers, including laser-cooled
trapped ions (Cirac and Zoller 1995),
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(a) Broadband Excitation (b) EIT Scheme (c)

Sideband cooling of a multi-ion string that is accessing many
excited vibrational modes is very difficult in that the sideband
structure becomes dense and complicated. EIT cooling 
permits broadband cooling of several vibrational modes,
|m〉, |k〉, ... , simultaneously. (a) When a broadband probe laser
is applied to the |��〉|m〉 → |��〉|m〉 transition, both cooling (red)
and heating (blue) transitions can occur. (b) When a second
coupling laser excites the |r〉 → |��〉 transition, the ion’s 
absorption profile becomes modified. Proper choice of laser
detuning (to the dashed state) suppresses heating transitions.

This result is evident in figure (c), where the solid line gives
the absorption profile for the EIT scheme. For proper tuning of
the lasers, the absorption strength for the transition |m〉 → |m〉
is zero and a strong asymmetry between |m〉 → |m + 1〉 and 
|m〉 → |m – 1〉 transitions is introduced. This asymmetry in
absorption between the blue and the red sideband also holds
for higher-frequency vibrational modes (|k〉 → |k ± 1〉), allowing
simultaneous cooling of several different modes with one
broadband laser. [Figure was adapted from Schmidt-Kaler (2001) with

permission from the authors.]

Figure 11. EIT Cooling



nuclear magnetic resonance
(Gershenfeld and Chuang 1997, Cory
et al. 1998), cavity quantum electro-
dynamics (Ye et al. 1999), and more
recently, superconducting devices,
quantum dots, and silicon-based solid-
state devices. 

From the preliminary experiments
performed by several groups world-
wide, it is apparent that the existing
ion traps are adequate to hold and
manipulate small numbers of qubits.
Although five to ten qubits hardly a
computer make, these numbers are
large enough to make the technology
well worth pursuing. Ion traps will be
a potent tool for exploring, for exam-
ple, the possibility of creating entan-
gled states of large numbers of qubits.
Investigations of the type described
here will help us identify the relevant
physics issues that must be addressed
to achieve computational gains. 

We should also expect that many of
the technologies now being pursued for
quantum computation will be super-
seded by even more promising ideas.
One such idea is to scale up to a larger
number of qubits by multiplexing sev-
eral ion traps with a specific trap that
contains a few qubits acting as the cen-
tral processor. After implementing part
of a quantum algorithm, the qubits
would be shuffled into one of several
storage traps, thus allowing new qubits
to be loaded into the processor. Recent
work also suggests that we could 
transfer the internal quantum states of
a string of ions in a trap to a set of
photons in a high-finesse cavity. The
quantum information could then be
transferred through optical fibers into a
second cavity and fed back into an ion
string in a different trap. Developments
like this will surely continue to happen
and will allow us to explore quantum
computation well beyond the current
state of the art. 

As we get closer to realizing a
small quantum processor, the “time
scales” of a particular system become
more relevant. In general, the hierar-

chy of time scales present in an ion-
trap quantum computer is very prom-
ising. Manipulations on quantum
registers can be done in microseconds,
while disturbances by the environment
have been shown to be avoidable 
for milliseconds. The inherent deco-
herence time of the quantum state is
longer still, for it is limited by the
lifetime of the upper qubit state,
which is about 1 second in calcium.
The decoherence time can be
increased even more by an appropriate
choice of ions (for example,
ytterbium) or by stable ground-state
hyperfine levels used as logical qubit
states. 

It is important to point out that
despite the revolutionary advances in
computers during the last 50 years,
the fundamental principle of computa-
tion has not changed. Today’s fastest
supercomputer operates according to
the same rules as the ENIAC.
Quantum computation, however, rep-
resents a paradigm shift in informa-
tion processing. Although a future
quantum computer may not look any-
thing like our current ion trap, the
experience and knowledge we gain
now will be of fundamental impor-
tance to our understanding this new
paradigm of computing. 

For some researchers, building a
quantum computer to break secure
codes is an important, and certainly
challenging, goal. But for me and most
of my colleagues, performing experi-
ments that Erwin Schrödinger and
Albert Einstein only dreamed of and
thus gaining a deep understanding of
this “inconceivable” quantum world
are far larger rewards. Perhaps we will
encounter some failure of conventional
quantum mechanics, or perhaps the
problems of decoherence will forever
keep the quantum realm out of our
classical grasp. In any event, the future
will be exciting for both quantum
physics and computation. �
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One of the major challenges in
quantum computing is to iden-
tify a system that can be

scaled up to the number of qubits
needed to execute nontrivial quantum
algorithms. Peter Shor’s algorithm for
finding the prime factors of numbers
used in public-encryption systems
(numbers that typically consist of more
than a hundred digits) would likely
require a quantum computer with sev-
eral thousand qubits. Depending on the
error correction scheme appropriate to
the particular computer, the required
number could be much larger.
Although ion-trap or nuclear-magnetic-
resonance (NMR) quantum 
“computers” containing a few (less
than 10) qubits have been successfully

demonstrated, it is not clear that those
systems can be scaled up. 

Solid-state quantum computers
may be more likely candidates. As a
result, a number of solid-state
schemes have been proposed, most of
which fall into two categories: The
physical qubits are spin states of indi-
vidual electrons or nuclei, or they are
charge or phase states of supercon-
ducting structures. 

A particularly promising scheme is
the silicon-based nuclear-spin com-
puter, proposed a few years ago by
Bruce Kane (1998), then of the
University of New South Wales in
Sydney, Australia, and now of the
University of Maryland in College
Park, Maryland. Shown in Figure 1,

the Kane computer architecture con-
sists of a linear array of phosphorus
atoms embedded beneath the surface
of a pure silicon wafer. Each phospho-
rous atom serves as a qubit, and the
linear array forms the computer’s
quantum register.1 The entire wafer is
placed in a strong, static magnetic
field B0 at sub-Kelvin temperatures,
and alignment of the phosphorous
atom’s nuclear spin as parallel or
antiparallel to B0 corresponds to the
| 〉 and | 〉 states of the qubit, respec-
tively. (Throughout this article, we
will follow the convention of Kane
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and use the notation | 〉, | 〉 to desig-
nate both qubit and nuclear spin
states. We will use arrows,|↓ 〉 or |↑ 〉,
to designate electron spin states.)

In order to execute a quantum algo-
rithm, we need to rotate individual
qubits in Hilbert space and couple two
qubits together. We accomplish both
operations with an array of gate elec-
trodes2 that lies on top of the wafer but
is isolated from the pure silicon by a
thin insulating layer of silicon dioxide
(SiO2). Referring to Figure 1, notice
that each A-gate sits precisely above a
phosphorous atom and each J-gate lies
between adjacent atoms. As discussed
later, a small positive voltage applied to
the A-gate gives independent control of
the qubit directly under the gate, while
voltage applied to the J-gate allows
coupling two qubits together through an
electron-mediated interaction. 

The Center for Quantum Computer
Technology (CQCT), headquartered in
Sydney, Australia, and Los Alamos
National Laboratory are trying to fabri-
cate Kane’s silicon-based quantum
computer. Although we can call upon
the technology, techniques, and collec-
tive experience of the huge silicon
semiconductor industry, building the
computer is still a daunting enterprise.
We need to manipulate individual phos-
phorus atoms and place them precisely
within a defect-free, isotopically pure
silicon matrix. We need to create metal
gates on the nanoscale, lay them within
a few atoms of each other, and then
ensure that each gate is aligned properly
over the buried qubits. Simply put,
the ability to do this level of nanofabri-
cation does not exist at this time. 

Employing a “see-what-works-best”
strategy, we have initiated parallel
research approaches for nearly every
fabrication stage. If one approach fails,
we still have a backup. Our current
focus is on developing a prototype

two-qubit device. By stretching many
technologies beyond their heretofore-
assumed limits, we have come tantaliz-
ingly close to achieving that goal. 
In the sections that follow, we describe
the computer and some critical 
technologies in greater detail, and we
also outline our progress in building 
a prototype.

Design Features of the
Silicon-Based Computer

In our solid-state architecture,
individual phosphorus atoms are
embedded in a sea of silicon. These

two elements were chosen for several
reasons, the first and foremost being
that phosphorous is the standard
dopant for conventional silicon-based
semiconductor devices and there is
tremendous working knowledge of
phosphorus and silicon from the con-
ventional computing industry. 

The second reason stems from the
need to control the spin environment.
We require our qubits to have nuclear
spin I = 1/2, but we also want the 
surrounding environment to be spin
free. Otherwise, unwanted spin-spin
interactions between the qubit and any
nearby nuclear spins would compro-
mise the coherent states needed for
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Figure 1. Schematic of the Silicon-Based Quantum Computer
The architecture of Kane’s solid-state quantum computer has a linear array of phos-
phorous donor atoms buried into a pure silicon wafer, with an interdonor spacing of
about 20 nm. In the presence of a large magnetic field and at sub-Kelvin tempera-
tures, the nuclear spins of the donor atoms can be aligned either parallel or 
antiparallel with the field, corresponding to the | 〉 and | 〉 qubit states, respectively.
An array of metal gates lies on the surface of the wafer, isolated from the silicon by
a barrier layer of SiO2. The A-gates lie directly above the donor atoms and enable
individual control of single qubits. The J-gates lie between the donors and regulate
an electron-mediated coupling between adjacent nuclear spins, thus allowing for
two-qubit operations. Readout of the qubit is performed with either a single electron
transistor, as shown, or with a magnetic-resonance force microscope (MRFM, not
shown). The electron clouds shown here are schematic—the actual situation is 
more complicated.

2 In this context, a “gate,” like a transistor gate, is a
device used for controlling charge motion. It does
not refer to a logical operation such as a cnot gate.



quantum computation. The only stable
phosphorous isotope, phosphorous-31,
is a spin-1/2 nucleus, so nature has
automatically satisfied our qubit crite-
rion. Creating a spin-free environment,
however, is a little more difficult.
Natural silicon contains a mixture of
three isotopes: silicon-28, -29, and 
-30. Whereas the even-numbered iso-
topes are spin free, silicon-29 has a
spin of I = 1/2. As a result, we esti-
mate that to do quantum computation,
we will need to reduce the silicon-29
content in our silicon wafer to about
one part in 105. Those stringent 
isotopic purity levels can be reached
with current technology. 

Finally, the nuclear spin of a phos-
phorous atom in a silicon host is sta-
ble. One way to infer the stability is to
examine the spin-lattice relaxation
time T1, which characterizes the time
it takes for a spin system with a net
alignment (a net magnetization) to
return to its thermally equilibrated
magnetization. At temperatures of
about 1 kelvin, the nuclear-spin 
relaxation time T1,n (where the 
subscript “n” is for the nucleus) for
phosphorus in silicon is expected to
be longer than 10 hours (Feher 1959). 

The nuclear spin qubits, however,
interact with the environment through
their donor electrons; as a result, the
electron spin stability is also impor-
tant, particularly for qubit readout (see
later discussion). The electron-spin
relaxation time T1,e (where the 
subscript “e” is for the electron) is
approximately 1 hour at about
1 kelvin (Honig and Stupp 1960). 
The phase decoherence time of the
electron spin, as measured by the
spin-spin relaxation time T2,e, is
shorter still. Although never measured
for an isolated electron system such as
our qubit scheme, the T2,e for an
ensemble of electrons was measured
to be approximately 0.5 millisecond
(Gordon and Bowers 1958). A recent
theoretical study, appropriate for a
single phosphorus donor atom in sili-

con, indicates a T2,e of the order of
1 second (Mozyrsky et al. 2002). 
This value for T2,eshould be long
enough for us to perform a quantum
computation and read out the result. 

The Spin Hamiltonian and
Single-Qubit Operations. To under-
stand the physics underlying the oper-
ation of the silicon-based computer,
recall that phosphorus has one more
electron in its outer electron shell than
silicon. When it is placed into a sili-
con crystal lattice, phosphorus fulfills
its role as a surrogate silicon atom and
still has one electron left over. At very
low temperatures, that “donor” elec-
tron remains bound—albeit rather
loosely—to the phosphorus nucleus.
The electron “talks” to the nucleus
primarily through the charge
(Coulomb) interaction and to a lesser
degree through the hyperfine interac-
tion, which is between the electron
spin and the nuclear spin. 

We exploit the hyperfine interac-
tion to individually address single
qubits. The effective low-energy, low-
temperature Hamiltonian describing
the spin interactions for the electron
spin and the nuclear spin of an atom
in the presence of a static magnetic
field B0 is given by 

H = µB B0 σz
e – gn µn B0 σz

n

+ Aσe•σn , (1)

where σz
e and σz

n are Pauli spin
matrices,µB and µn are the Bohr and
nuclear magnetons, respectively, and
gn is the nuclear g-factor. The hyper-
fine interaction is described by the
term Aσe•σn. 

For large values of B0, the
Hamiltonian in Equation (1) leads to a
set of energy levels that correspond to
the four hyperfine levels,| ↓〉, | ↓〉, | ↑〉,
and | ↑〉. At the sub-Kelvin operating
temperature of the computer, however,
the electron spins are completely spin-
polarized in the lower-energy state|↓〉.

Thus, for one-qubit operations, we may
ignore the electron spin polarization to a
good approximation and consider only
the two nuclear states | 〉 and | 〉 (Goan
and Milburn 2000). The energy differ-
ence between those states is 

∆E0 = hω0
≅ 2gn µn B0 + 2A + 2A2/µB B0 ,

(2)

where ω0 is called the nuclear reso-
nance frequency. The resonance fre-
quency, which is typically in the
radio-frequency (rf) range, is equal to
the Larmor frequency, or the rate at
which the nuclear spins precess about
the magnetic-field lines. 

Suppose B0 is aligned along the z-
axis, and the nuclear spin is initially
in the | 〉 state. If we subject the spins
to a secondary magnetic field that is
oscillating in the x-direction at the
nuclear resonance frequency, that is, a
field B1 = B1 cos(ω0t) x̂, then the
nuclear spins will begin to rotate
toward the (–z)-axis, or from the par-
allel to the antiparallel alignment (see
the box “Spin Manipulation with
Magnetic Resonance” on page 288 ).
The spin rotation is equivalent to
rotating a qubit in Hilbert space from
the | 〉 state to some superposition of
the | 〉 and | 〉 states. 

As described, the B1 field will
affect all spins simultaneously. To
address a particular spin, we use the
A-gate directly above it and modify
that donor atom’s hyperfine coupling.
The parameter A in Equation (1) is
proportional to the magnitude of the
electron probability density at the site
of the nucleus,Ψe(0):

A = 8/3πµB gn µn Ψe(0) 2 . (3)

As seen in Figure 2, placing a positive
voltage on the A-gate above the phos-
phorous atom attracts the atom’s elec-
tron cloud toward the surface and away
from the nucleus, thereby reducing 
the magnitude of Ψe(0). The hyperfine
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energy levels of that one atom change
slightly, and the resonance frequency
needed to rotate the nuclear spin is
reduced from, say,ω0 to ω–. If the fre-
quency of the B1 field is set to ω–, that
is, B1 = B1 cos(ω–t) x̂, then only the
spin directly under the A-gate will be
in resonance and will begin to rotate.
Removing the voltage on the A-gate
halts the rotation. 

A one-qubit gate operation is there-
fore implemented if the silicon wafer
is subjected to a transverse oscillating
B-field of frequency ω– and if the A-
gate above a qubit is pulsed for a
defined period. Throughout the dura-
tion of the pulse, the qubit is in reso-
nance with the secondary magnetic
field and rotates through some angle
in Hilbert space. When the voltage is
removed at the end of the pulse, the
qubit is left in the desired superposi-
tion of the | 〉 and | 〉 states. 

Two-Qubit Operations. To select
adjacent pairs of qubits for two-qubit
operations, we apply a positive voltage
to the J-gate between them. As seen in
Figure 3(a), this procedure causes the
electron wave functions of the two
donor atoms to overlap, and the elec-
tron spins couple together through the
electron-spin exchange interaction.
Because each electron is coupled to its
nucleus through the hyperfine interac-
tion, turning on the electron-spin
exchange interaction also couples the
nuclear spins together. 

The coupled nuclear-electron spin
system is fairly complex, but we can
gain insight into it by looking at the
effective Hamiltonian for the system:

Hcoupled= H1 + H2 + Jσ1e• σ2e . (4)

This Hamiltonian is valid at energy
scales that are small compared 
with the electron-binding energies 
of the donor atoms. The first two
terms correspond to the hyperfine
Hamiltonian—Equation (1)—of each
donor, respectively, and the last term
accounts for the spin exchange 
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Figure 2. A-Gate Control of One Qubit 
We use magnetic resonance techniques to rotate nuclear spins and place them in
arbitrary superpositions of | 〉 and | 〉 qubit states. (a) In this cartoon, a small volt-
age is applied to the A-gate directly above a qubit. The donor electron moves away
from the 31P nucleus. (a′) This plot of the electron probability density surrounding a
donor atom with no voltage on the A-gate was obtained by solving the Schrödinger
equation nonperturbatively in an isotropic effective-mass hydrogenic basis. The plot
is a cross section through the nucleus, with the color variations on a logarithmic
scale. The atom is buried 20 nm below the Si/SiO2 interface. (b) The graph shows
the variation of the nuclear transition frequency as a function of A-gate voltage.
(b′) The color plot shows the electron probability density. A positive voltage on 
the A-gate pulls the electron away from the nucleus, thus reducing the hyperfine
coupling—the parameter A in Equation (1) in the text. In a B-field of about 2 T, the
resonance frequency of a phosphorous nucleus q1 is ν0 = ω0/2π ≈ 93 MHz. With a gate
voltage of 1 V, the resonance frequency of q1 reduces to about ν– = ω–/2π ≈ 90 MHz,
while a neighboring nucleus q2 is in resonance at about 87 MHz. (The proximity of
the oxide barrier has a fairly large effect on the qubits, and the positive gate voltage
affects q2 more than q1.) Subjecting the silicon wafer to a transverse, oscillatory
magnetic field of frequency ν– would cause only q1 to respond. (c)–(c′) Initial 
calculations indicate that the electron probability density is more responsive to 
a negative gate bias, which results in better frequency discrimination between 
adjacent qubits.
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Spin Manipulation with Magnetic Resonance

Magnetic resonance is the traditional technique for detecting and manipulating 
any particle, such as an electron, atom, or nucleus, that has a magnetic moment µ.
The manipulation is controlled by a combination of static and oscillating 
magnetic fields. Classically, a particle’s magnetic moment is proportional to its
angular momentum J through the relation 

µ = q /2m J  , (1)

where q is the charge of the particle and m is its mass. Remarkably, a similar 
relation holds true in quantum mechanics, although we must also take into account
the particle’s intrinsic spin angular momentum. In general, we can write 

µ = γJ  , (2)

where the parameter γ is known as the gyromagnetic ratio. It is related to the 
constants in equation (1) by a dimensionless constant known as the g-factor,

γ = g (q/2m)  .  (3)

The magnitude and sign of the g-factor depend on the specific atom or nucleus,
but are always approximately 1. 

In the classical picture of a randomly oriented moment in a magnetic field 
B0 = B0 ẑ, the moment would like to lower its energy by aligning itself parallel to
the applied field. But the magnetic field can only produce a torque on the moment,
� = µ × B0. Because the torque is directed perpendicular to the plane defined by
the field, the moment does not align with the field, but like a spinning gyroscope
that resists the force of gravity, precesses around the magnetic field line. By using
the fact that the torque is equal to the rate of change of the angular momentum,
we can derive the angular precession frequency of the moment (see Figure A):

ωL = γB0 , (4)

where ωL is called the Larmor frequency and is measured in radians per second.
Equation (4) is the single most important equation of magnetic resonance. It says
that the frequency of precession about a magnetic-field line is proportional to both
the magnitude of the magnetic field and the gyromagnetic ratio. Interestingly, as
derived in the equations accompanying the figure, the frequency is independent of
the angle θ that specifies the orientation of the magnetic moment. The Larmor fre-
quency enables us to identify the particle because the gyromagnetic ratio is distinct
for electrons and different nuclei. The Larmor frequency (ω0/2π) for an electron is
about 28 gigahertz per tesla (MHz/T) and for a proton, roughly 45 MHz/T. 

The moments precessing in the applied field can be manipulated in several ways.
One common method is pulsed magnetic resonance. For a short period, we apply an
oscillating magnetic field along the x-axis,B1 = B1 cos(ωosct) x̂, where B1 << B0.
The moment will begin to precess around a time-dependent total magnetic field
consisting of B0 plus B1. This complicated motion can be better understood by
examining the moment in a reference frame that rotates around the z-axis with 
frequency ωosc,the same frequency as B1. In the rotating frame,B1 becomes a static
field and the precession frequency about the z-axis is reduced:ωL → ωL – ωosc.
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Figure A. Larmor Precession 
Magnetic moments precess around
magnetic field lines at the Larmor 
precession frequency ωL, which is
derived above.

Figure B. Effective Magnetic
Field in the Rotating Frame 
The motion of the moment about Beff
is easier to describe in the frame
rotating about the z-axis at the same

frequency ωosc as the oscillating field
B1, since then B1 is static. B0 is
reduced by the amount ωosc/γ.
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Phenomenologically speaking, in the rotating frame the magnetic moment “sees”
an effective field of magnitude

(5)

which is illustrated in Figure B. Equation (5) tells us that, when the frequency of
the B1 equals the Larmor frequency, namely, at the resonance condition ωL = ωosc,
the effective field has no z-component. Only the B1 field remains, and the moment
will precess around the x-axis at an angular frequency ω1 set by the magnitude of
B1, namely,ω1 = γB1.  Thus in the laboratory, we can rotate a moment about the 
x-axis by setting the frequency of B1 to the Larmor frequency. We control the rate
of rotation by adjusting the field strength and the amount of rotation by restricting
the length of time that the B1 field is applied.

Pulsed magnetic resonance can be used to manipulate a qubit. Suppose a qubit state
is defined by the nuclear spin orientation such that the spin aligned parallel to B0
represents the state | 〉 whereas the spin aligned antiparallel to the field represents
the state | 〉. We send a current pulse through an inductive coil to create the field B1.
If the pulse is timed to last for one-half of a precession period, or t = π/ω1, then 
the spins will rotate around the x-axis for π radians, or by 180°. If the qubit was 
initially in the | 〉 state, it would now be in the | 〉 state. Similarly, we can pulse the
current for a time t = π/(2ω1)—a so-called π/2 pulse—and rotate the qubit into an
equal superposition of the | 〉 and | 〉 states, namely the state 1/√2 (| 〉 + | 〉). 
(See Figure C.)

We can also make moments rotate continuously about the x-axis. In a process
known as cyclic adiabatic inversion, we sweep ωosc through a range that includes
the Larmor frequency. When we start the sweep,ωosc<< ωL. According to
Equations (5), there is little cancellation of the static field B0, and Beff will lie
substantially along the z-axis. As the frequency approaches ωL, there is more 
cancellation, and Beff begins to rotate toward the x-axis. When ωosc= ωL, Beff
points along the x-axis. Continuing to sweep the frequency to ωosc>> ωL will
eventually cause Beff to point along the (–z)-axis. If ωosc is swept slowly enough
(the adiabatic condition), the moments will continue to precess around Beff and
will follow its rotation in the x-z plane from +z to –z (See Figure D). Reversing
the sweep will cause Beff to rotate backwards. By continuously sweeping ωosc
back and forth through the resonance frequency, we effectively make the spins
rotate continuously around the y-axis. 

Cyclic adiabatic inversion provides one of the mechanisms by which we detect elec-
tron moments with a magnetic resonance force microscope (MRFM). A small number
of moments are in resonance with B0, B1, and the gradient field produced by the 
magnetic tip at the end of the MRFM cantilever. We use cyclic adiabatic inversion to
selectively rotate those moments, thus producing a tiny oscillating magnetization
within the sample that in turn produces an oscillating force on the MRFM cantilever.
By adjusting the rate at which we sweep ωosc, we can match the forcing frequency to
the cantilever’s resonant frequency,and even a small number of moments can drive
the cantilever into a detectable oscillation.
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Figure D. Cyclic Adiabatic
Inversion
Beff rotates about the y-axis when ωosc
is swept through the resonance 
frequency ωL. If ωosc changes slowly,
the moment continues to precess
about Beff and we can rotate the
moment about the y-axis.

Figure C. Pulsed Magnetic
Resonance
When ωosc is made equal to ωL, a
moment will begin to rotate about the 
x-axis. We place a qubit into an equal
superposition of logical states by rotat-
ing the moment through 90° with a π/2
pulse, in which B1 is turned on for a
time t = π/(2ω1), where ω1 = γ B1.
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interaction. The exchange coupling
coefficientJ is proportional to the over-
lap between the wave functions of the
two donor electrons, so its strength is a
function of the J-gate voltage.

We fi rst examine the coupled 
electron-spin states by ignoring (for 
a moment) the contribution of the
nuclear spins to H1 and H2 in
Equation (4). The effect of the spin
exchange interaction is to create 
coupled electron-spin states, three
with total spin S = 1 and one with
total spin S = 0. The respective wave
functions are

S = 1 |↑↑ 〉 ,
1/√2 |↑↓ + ↓↑ 〉 , and
|↓↓ 〉 ,

S = 0      |S〉 = 1/√2 |↑↓ – ↓↑ 〉 . 

In the absence of a magnetic field, the
energy difference between the states
with S = 1 and S = 0 is 4J, an amount
known as the exchange energy. In the

presence of the magnetic field B0 that
permeates the quantum computer, the
|↑↑ 〉 and |↓↓ 〉 states are Zeeman-split
around zero by an amount ±2µBB0,
and the energies of the coupled elec-
tron-spin states vary as a function of
J, as seen in Figure 3(b). Notice that
the lowest-energy S = 1 state and the
S = 0 state cross when the exchange
energy becomes equal to the Zeeman
splitting, that is, when 4J = 2µBB0.
We exploit that crossing in a qubit
readout scheme discussed later. 

We now consider the nuclear spin
states. Conceptually, for every cou-
pled electron-spin state, there are four
possible orientations of the two
nuclear spins, corresponding to the
uncoupled (J = 0) nuclear states | 〉,
| 〉, | 〉, and | 〉. Thus, there are six-
teen nuclear spin states in all.
Formally, we must use Equation (4)
to find the energies and eigenfunc-
tions of all sixteen.3 If we focus only
on those states associated with the
electron ground state |↓↓ 〉 and assume

4J< 2µBB0, then in order of decreas-
ing energy, the coupled nuclear-spin
states are the following:

| 〉 ,
|Φ+〉 = 1/√2 | + 〉 ,
|Φ–〉 = 1/√2 | – 〉 , and
| 〉 . (5)

The electron-spin exchange inter-
action shifts the energy of the |Φ–〉
state below that of |Φ+〉 by an amount

(6)

where ωJ is the nuclear exchange fre-
quency. For B0 = 2T and 4J = 0.124
milli-electron-volt (meV),ωJ has a
value of about (2π)75 kilohertz, a fre-
quency that approximates the rate at
which binary operations can be per-
formed on the computer. 

The spin exchange interaction caus-
es the wave functions of Equation (5)
to evolve and rotate between spin
states. One possible result is that the
nuclear spins undergo a coordinated
swapping of states:|q1q2〉 → |q2q1〉
(see the box “The Swap” on the facing
page). Thus, the spin exchange interac-
tion should automatically implement
the logical two-qubit swap gate. 

Of more interest is the cnot gate,
which along with single-qubit opera-
tions, forms a universal set of gates
from which any quantum algorithm
can be executed. In the Kane system,
the cnot corresponds to the conditional
rotation of a target spin by 180°, pro-
vided the control spin is in the state
| 〉. In principle, it can be realized by
subjecting the wafer to a transverse
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(a)

Figure 3. Coupling Two Qubits with a J-Gate
(a) When the gates A1 and A2 are appropriately biased, application of a small posi-
tive voltage to the J-gate lowers the potential barrier between adjacent donor sites
and turns on an electron-spin exchange interaction between qubits, as seen in this
cartoon. The electrons interact with the nuclei through the hyperfine interaction;
hence, the two nuclear spins become coupled to each other. (b) The graph shows
energy levels of the coupled electron-spin system as a function of the electron-spin
exchange coefficient J, which can be modified by voltage applied to the J-gate. The
electrons couple their spins to form three states with S = 1 (shown in blue) and one
with S = 0 (shown in red). For J/µBB0 < 0.5, the electrons occupy the lowest energy
S = 1 state |↓↓ 〉. Two-qubit operations are performed in this low J regime.
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3 The energy differences between the four
nuclear states associated with each electron
state are very small.  A graph of the nuclear-
electron energy levels would look identical to 
Figure3(b), except that under high magnifica-
tion one would see that each line consists of
four closely spaced lines.
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magnetic field B1 and applying 
voltages to the A- and J-gates (Goan
and Milburn 2000). 

Suppose that the two electron spins
are initially uncoupled (J = 0) and that
the hyperfine coupling constants A1
and A2 of the two donor atoms are
equal (A1 = A2). In that case, biasing
the A-gates such that A1 > A2 distin-
guishes the control qubit from the tar-
get. We then turn on the spin exchange
interaction (J > 0) and slowly make 
A1 equal to A2. The result would be
that the uncoupled qubit state | 〉
evolves adiabatically into the state
|Φ+〉 = 1/√2 | + 〉, and | 〉 evolves
into |Φ–〉 = 1/√2 | – 〉. When 
A1 equals A2, the energy splitting
between the two states is given by
Equation (6). The states | 〉 and | 〉
are unaffected by the procedure. 

We next apply a linearly polarized
oscillating field B1 with frequency
that is resonant with the | 〉 – |Φ+〉
energy difference. The field is left on
until the | 〉 state has rotated into the
|Φ+〉 state and vice versa. By execut-
ing a reverse of the sequence of steps
performed at the beginning of the
operation, we adiabatically transform
the |Φ+〉 and |Φ–〉 states back into | 〉
and | 〉, respectively. We effect the
change 

| 〉 → | 〉  ,
| 〉 → | 〉  ,
| 〉 → | 〉  , and 
| 〉 → | 〉  .

That is, the only qubits that are
flipped are those in which the control
qubit is in the state | 〉. Thus,
we expect to be able to perform the
cnot operation. 

Approaches to Readout

One can evaluate the result of a
quantum computation only by reading
the final state,| 〉 or | 〉, of a qubit.
Likewise, the ability to determine the

state of a given qubit is critical to ini-
tializing the quantum register. Ideally,
we would read the qubit state directly
by measuring the donor atom’s nuclear-
spin state. But direct detection of a sin-
gle nuclear spin is currently impossible
and may forever be out of our grasp.
(The strength of the coupling between a
magnetic field and the nuclear spin is
set by the magnitude of the nuclear
magneton µn, which is very small.) We
are therefore forced to find some other
means of reading out the qubit state. 

The potential solution is to correlate
the nuclear spin states of a target atom
with the electron spin and to find some
way of determining the electron spin
state. We are currently pursuing two
distinct detection schemes, one involv-
ing a single electron transistor (SET)
and the other, a magnetic resonance
force microscope (MRFM). Both
approaches require that we push 
the respective technologies beyond the
current state of the art.

Single-Charge Measurement
Using SETs. The idea behind this
technique, first described by Kane
(1998), is to couple the target qubit qt
to a readout qubit qr by a J-gate, and
then infer the state of qt by monitor-
ing the donor electrons of the coupled
system. If qt is in the state | 〉, we can
cause both electrons to become local-
ized around the readout atom (they
would occupy the so-called D– state).
If qt is in the state | 〉, each donor
electron would remain bound to its
respective atom. An SET would be
used as an ultrasensitive electrometer
to determine whether one or two elec-
trons were bound to the readout atom. 

The procedure can be understood
with reference to Figure 4(a), which
shows the coupled nuclear-spin states
in the vicinity of the electron spin
crossing. As discussed in the previous
section, for J/µBB0 < 0.5, the lowest-
energy electron spin state is the S = 1
state |T〉 = |↓↓ 〉, but for J/µBB0 > 0.5,
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The Swap

Before the J-gate is turned on, the two nuclear spins are uncoupled, and each
is described by the following energy eigenstates:|Ψ1〉 = | 〉, |Ψ2〉 = | 〉,
|Ψ3〉 = | 〉, and |Ψ4〉 = | 〉. Once the J-gate is turned on, the coupled eigen-
states are | 〉, |Φ–〉 = 1/√2 | – 〉, |Φ+〉 = 1/√2 | + 〉, and | 〉. 

Suppose the uncoupled nuclear spins were originally in the state |Ψ2〉 = | 〉,
and then voltage was applied quickly to the J-gate. In terms of the eigenstates
of the coupled system, the system finds itself in the state

|Ψ2〉 = 1/√2 (|Φ+〉 – |Φ–〉)  . (1)

The time evolution of this wave function (up to an overall phase) is given by 

|Ψ2(t)〉 = 1/√2 (|Φ+〉 – e–iωJt |Φ–〉)  , (2)

where ωJ is the nuclear exchange frequency. After a time t = π/ωJ, the wave
function will evolve into

|Ψ2(π/ωJ)〉 = 1/√2 (|Φ+〉 + |Φ–〉) = |Ψ3〉 . (3)

That is, the system will have evolved from the state | 〉 to the state | 〉. 
The spins will have swapped. If we quickly remove the voltage from the 
J-gate, the two-spin system will remain in the state | 〉.



the S = 0 state |S〉 = 1/√2 |↑↓ – ↓↑ 〉
assumes the lower energy. 

Figure 4(a) shows what happens to
the eight lowest-energy nuclear-spin
states as the electron-spin states cross.
Focusing on the four states initially
associated with |T 〉, we see that after
the crossing, the two higher-energy
nuclear states | 〉 and |Φ+〉 remain
coupled to |T 〉, while the two lower-
energy states | 〉 and |Φ–〉 get cou-
pled to |S〉. In other words, as we
increase J, we can adiabatically
evolve both the nuclear- and electron-
spin systems. If the target qubit was
originally in the state | 〉, then regard-
less of the state of the readout qubit,
the electrons will evolve into the S = 0
spin state. If qt is originally in the
state | 〉, the electrons will remain in
the lowest energy S = 1 spin state. 
The sequence of steps, similar to
those used to implement the cnot
gate, is outlined in Figure 4(b). 

We next use the fact that the only
two-electron bound state of a phospho-
rous atom in silicon is the D– state
with total spin S = 0. As seen in
Figure 4(c), we would bias the A- and
J-gates to create an electric field
between the two donor atoms. If the
electrons are in the S = 0 state, the tar-
get electron can transfer to the readout
atom, and we would know that the tar-
get atom was initially in the state | 〉. 

An SET would be used to detect
the presence of the second donor elec-
tron about the readout atom. In many
ways, an SET is like an ordinary tran-
sistor, in that a gate electrode moder-
ates the current flowing between a
source and drain electrodes. The dif-
ference is that between the SET’s
source and drain lies an extremely
small metallic island, which is isolated
from each electrode by small patches
of insulating material. The insulator
acts as a tunnel junction. For current
to flow, electrons must tunnel from 
the source to the island and then from
the island to the drain. The tunneling
current is greatly affected by the
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Figure 4. Single-Electron Transistor (SET) Readout Scheme
(a) The graph shows the eight lowest-energy nuclear-spin states for the coupled
target and readout qubits |qt, qr〉 in the region where the S = 0 and the lowest
energy S = 1 electron-spin states cross. (b) We can adiabatically evolve the
nuclear-electron states by biasing the J- and A-gates, as seen in this (partial)
sequence of steps. The electrons are initially in the S = 1 state |T 〉 . If qt was ini-
tially in the | 〉 state, then the electrons will remain in |T 〉 regardless of the state
of qr. If initially qt = | 〉 , then at the end of the sequence, the electrons will be in
the S = 0 state |S〉 . (c) Only the two electrons in the |S〉 state can bind to a single
phosphorous atom in silicon. Given a suitable biasing of the gate electrodes, we
can try to induce an electron to tunnel to a readout qubit qr. If the tunneling is
successful, the electrons were in the |S〉 state, and qt = | 〉 . The tunneling current
would be detected by an SET located near qr. (d) If no tunneling occurs, the two
electrons were in the |T 〉 state, and hence qt = | 〉 .



capacitive coupling between the gate
and the island. This means that for
particular voltage biases on the gate,
source, and drain, current flow
through the SET becomes exquisitely
sensitive to minute changes in the
charge distribution of the local envi-
ronment. The presence of a single
additional electron is readily
detectable as a change in the SET’s
source/drain conductance. 

We have developed several readout
simulation devices to test the proper-
ties of our SETs built in house. In the
device seen in Figure 5, two thin
metal bars, isolated from each other
by a tunnel junction, substitute for the
phosphorous atoms. Control gates are
used to electrostatically “push” single
electrons from one bar to the next.
The two SETs are then used to detect
the change in the charge distribution

due to the discrete, single-electron
tunneling events. Those events cause
the output of both SETs to change
abruptly. In contrast, signals due to
unwanted charge noise (reproducible
fluctuations in the conductance versus
voltage curve) tend not to affect both
SETs simultaneously. By correlating
the outputs of the two SETs, we are
able to clearly identify the single-
charge transfer events and reject 
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Figure 5. Twin SET Device for
Readout Simulation
(a) The figure shows one half of a twin
SET/ double-bar test device. The SET
consists of a small metal island con-
nected to source and drain leads by
tunnel junctions and a gate electrode
that is capacitively coupled to the
island. Electrons can pass from source
to drain only by tunneling through both
junctions. The SET is located next to a
metal bar B2, which is isolated from the
other bar B1 by a tunnel junction.
(b) The tunneling current Isd in the SET
is strongly influenced by a change in
the local charge distribution. If the gate
voltage is originally biased at V0, (blue
dot), then a change in the local charge
distribution effectively modifies it to V0
– δ, and the source-drain current will
change dramatically (red dot). (c) This
is an image of the twin-SET test device
obtained with a scanning electron
microscope. The image to the right is a
magnified version of the central region.
The twin-SET device is fabricated by a
double-angle evaporation process,
which replicates each of the features.
Unequal voltage on A1 and A2 causes
an electron to tunnel from one bar to
the next. (d) The movement of charge
is detected as a change in the
source/drain conductance in both
SETs simultaneously. The two signals
can be correlated to discriminate the
charge transfer signal from repro-
ducible charge noise or from random
noise events.
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spurious signals that would interfere
with the readout. 

Other factors, however, also need
to be considered before we use an
SET in a qubit readout scheme.
Suppose the target qubit qt is initially
in the | 〉 state. Then, for high values
of J, the coupled electrons will remain
in the higher-energy state |T 〉 (refer to
Figure 4). This means that the cou-
pled atomic system could lower its
energy if one of the polarized elec-
trons “relaxed” and flipped to form
the state |S〉. The electron would then
transfer to the readout qubit, and we
would erroneously deduce that qt was
initially in the | 〉 state! Recent results
suggest that the spin relaxation time is
of the order of milliseconds. We must
therefore pull information out of the
SET on an even shorter time scale.
We must be able to determine that a
change occurred in the SET conduc-
tance at a time t0, rather than a few
milliseconds after t0. 

Unfortunately, that is difficult to do
with an ordinary SET. The measure-
ments are made at liquid helium tem-
peratures, and the SET, sitting in a
cryostat, must somehow be connected
to the outside world. The capacitance
of the connecting cables is fairly
large, and when combined with the
intrinsic resistance of the SET,
produces a resistance-capacitance 
(or R-C) time constant for the device
that is longer than the spin relaxation
time. Information about the SET con-
ductance takes too long to propagate
to the outside world.

The solution to this problem is to
develop a fast readout SET
(Schoelkopf et al. 1998). Known as an
rf SET, it is basically an ordinary SET
coupled to an impedance-matching
circuit that negates the effects of the
external capacitance. We have recently
developed a very sensitive reflection-
mode rf SET that operates at
430 megahertz. It can detect the
movement of a single electron in the
device shown in Figure 5 in about

1 microsecond. For a system contain-
ing discrete phosphorous atoms, the
readout time would likely increase to
about 100 microseconds, but that is
still sufficient for the readout
approach discussed in this section. 

The MRFM. The second approach
to readout is to perform a direct meas-
urement of the spin state of the elec-
tron surrounding the qubit and thereby
infer the qubit state. To do so, we are
developing an MRFM, which com-
bines the versatility and chemical
specificity of magnetic resonance with
the high-resolution and ultrahigh sen-
sitivity of an atomic force microscope
(AFM). The key feature of the MRFM
is that only spins contained within a
defined area in the sample—the 
so-called sensitive slice—contribute 
to the detected signal. Because the
location and size of that slice can 
be controlled, there is selective sensi-
tivity to deeply buried structures. 

Our MRFM, developed at Los
Alamos in collaboration with Michael
Roukes of Caltech, is illustrated in
Figure 6. The microscopic, sharp-
pointed magnetic tip is bonded to the
end of a tiny cantilever. As in an ordi-
nary AFM, the tip is scanned over a
sample, and signals are recorded at
every point. In our instrument, howev-
er, the magnetic field from the tipB(r)
interacts with all the electron spins in
the substrate through the magnetic gra-
dient force,F(r) = (m•∇ )B(r), where
m is the net magnetization of the
spins. Depending on the spin orienta-
tion, the force on the tip is either
repulsive or attractive. The net orienta-
tion of the electron spins in the sam-
ple, therefore, causes a tiny deflection
of the cantilever. 

We interact with only a subset of
the spins through magnetic resonance.
The sample is immersed in a static
magnetic field B0 = B0ẑ, so the pre-
cession frequency of the spins around
the magnetic-field lines is proportion-
al to B0 plus the z-component of B(r),

that is, the total magnetic field in the
z-direction. Magnetic resonance
comes into play when we subject the
spins to an oscillating magnetic field
B1 that is aligned in the x-direction.
Because the magnitude of B(r)
decreases rapidly with distance, only
those spins that are at the correct dis-
tance from the tip are in resonance
with the B1 field. Spins that are too
close to the tip will have a higher res-
onant frequency; those that are farther
away, a lower frequency. Thus, for a
given field gradient and a fixed can-
tilever position, a resonance frequency
becomes correlated with positions
inside the sample. With reference to
Figure 6, all spins that lie within a
small, hemispherical shell beneath the
tip (the sensitive slice) have the same
resonance frequency. 

To detect those spins, we use the
technique of cyclic adiabatic inver-
sion, discussed in the box “Spin
Manipulation with Magnetic
Resonance” on page 288 . In essence,
we continuously rotate the selected
spins at the resonant frequency of the
cantilever. The continuous up and
down reorientation of the spins creates
an oscillating force on the tip that
amplifies the cantilever’s natural 
up-down motion. The situation is
analogous to pushing a child’s swing
at its natural frequency of oscillation:
with each push, the amplitude of the
motion becomes larger. After thou-
sands of spin rotations, the amplitude
of the cantilever’s up-down motion
has increased by about an angstrom,
which is large enough to be detected
with a fiberoptic interferometer. 
The fiber sits slightly above the back
of the cantilever, and laser light sent
down the fiber interferes with itself 
as it reflects from both the cantilever
and the fiber’s end. By monitoring
changes in the interference pattern,
we can detect the oscillations. 

The orientation of the nuclear spins
can be inferred from the frequency at
which the electron spin resonance
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occurs. Because of the hyperfine
interaction, the resonance frequency
of an electron spin flip depends on the
nuclear-spin state. Considering the
hyperfine states of a single qubit,
the | ↓〉 to | ↑〉 transition has a differ-
ent energy than the | ↓〉 to | ↑〉 transi-
tion, and thus there are two resonance
frequencies for an electron spin 
transition. Measurement of, say, the
higher resonance frequency would
correspond to the nuclei in the sample
being aligned with the B0 field. 

The discussion so far has centered
on detecting many nuclear spins, but
to read out the result of a quantum
computation, we need to measure a
single nuclear spin. That such meas-
urement is at all possible is due to the
exceedingly high spatial resolution of
the MRFM, which is determined by
the thickness ∆z of the hemispherical
shell. The thickness is inversely pro-
portional to the magnitude of the field
gradient:

(7)

where γ is the gyromagnetic ratio and
∆ωr is the linewidth of the resonant
electron-spin transition that is being
driven by the MRFM. For phosphorus
atoms in silicon,∆ωr/γ is on the order
of 1 milligauss. A field gradient of
about 105 tesla per meter (T/m) will
then produce a thickness that is much
less than 1 angstrom, even when the
hemispherical shell extends several
hundred angstroms beneath the sub-
strate surface. In that case, the sensi-
tive slice would be so thin that only a
single donor electron would be in res-
onance with the MRFM probe. 

We have conducted numerous
experiments to measure the field gra-
dient of our specialized magnetic tips.
With the tip about 2 micrometers from
the surface, we have measured a field
gradient approaching 104 T/m (see
Figure 7). From this value, we esti-
mated ∆z and the volume of our hemi-

spherical shell. Then, knowing the
spin density of the sample, we esti-
mated the number of spins that con-
tribute to the signal. For the data
shown in Figure 7, the number is
between one thousand and ten thou-
sand electron spins. 

Because the field gradient 
increases nearer to the tip, sensitivity
should be greater if the tip is closer
to the surface. But mechanical and
thermal noise also deflect the tip and
cantilever. As we begin to interact
with fewer spins, the “signal” force
due to spins eventually becomes 
less than the “noise” force due to

unwanted sources. By equating
expressions for the signal force to the
noise force, we can derive an expres-
sion for the minimum detectable
magnetic moment,mmin, needed to
give a signal to noise of 1:

(8)

In Equation (8),kB is the Boltzmann
constant; T, the temperature; and ∆ν,
the detection bandwidth. The other
parameters describe the cantilever: its
force constant k, resonant frequency f,
and quality factor Q. The three key
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Figure 6. The Magnetic Resonance
Force Microscope (MRFM)
(a) The MRFM can, in principle, deduce the
state (up or down) of a single nuclear spin.
The entire device sits at approximately liquid
helium temperatures in a static magnetic field
B0. The tip at the end of the cantilever is 
coated with a magnetic material that generates
a magnetic field B(r) that changes rapidly with the distance r. The interaction
between the electron spins in the sample and the magnetic field gradient due to B(r)
produces a force that deflects the cantilever. We interact with only a small subset of
spins, located within a hemispherical shell of radius r1, by subjecting the sample to
an oscillating magnetic field B1cos(ω1t), where ω1 = γ[B0+B(r1)]. By using the tech-
nique of cyclic adiabatic inversion, we can cause the spins to oscillate between the
up and down states at the cantilever resonance frequency, thus driving the can-
tilever into measurable oscillation. We detect the oscillation with an optical device.
The electron-resonance frequency can then be correlated with a nuclear spin orien-
tation. (b) The MRFM tip assembly and sample mount are shown in this photo.
The vertical tube is a piezo scanning tube, which moves the tip over the sample,
while the circular feature is the induction coil that produces B1. The white box high-
lights the magnetically coated tip, shown under high magnification in (c).
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parameters that we can optimize are
the field gradient, temperature, and
quality factor. 

We believe that the sensitivity of
the MRFM is currently limited by
surface contamination on the sample.
As the tip approaches the surface, the
contamination acts like a viscous
force that damps the oscillatory
motion—that is, it lowers the Q in
Equation (8). To solve this problem,
we are upgrading the equipment so
that the sample be transferred from a
surface preparation chamber into the
microscope without leaving the ultra-
high vacuum environment. The system
will also be cooled to temperatures
between 250 and 300 millikelvins in 
a helium-3 dilution refrigerator, a
technique that is compatible with
maintaining the sample under 
ultrahigh vacuum.

Detection of a single electron
moment requires that

mmin = 1 µB ≅ 10–23 joule/tesla  . (9)

Given a field gradient of 105 T/m,
the signal force on the cantilever is

approximately 10–18 newton (the
weight of approximately two million
phosphorus atoms). We believe 
that an upgraded, low-temperature
microscope will allow us to observe
the magnetic resonance signal of a
single electron spin.

SSQC Fabrication Progress

Implementing our quantum-
computing scheme requires that we
produce a very regular array of phos-
phorus atoms in pure silicon, in
which each donor is located precisely
beneath a metal A-gate on the sur-
face. The spacing between adjacent
phosphorus donors is chosen to
ensure that the electron-spin exchange
interaction is minimal when there is
no voltage on the J-gate lying
between the donors. We want the two
electron wave functions to overlap,
but only slightly. Calculations (Goan
and Milburn 2000) indicate that a
separation of 10 to 20 nanometers
between donors is required. 

A nominal donor spacing of

20 nanometers translates into gate
structures that are less than
10 nanometers in width. Fabricating a
highly regular metal array on that
scale, even with state-of-the-art 
techniques, is at the limits of the 
electron-beam techniques used in
making conventional electronics. 
That problem, however, pales when
compared with the difficulties we face
in making a precisely aligned array 
of phosphorous donors that is buried
under layers of silicon. The difficulties
have led us to pursue two different
fabrication strategies, known as the
top-down and bottom-up approaches. 

In the top-down approach, phos-
phorous atoms will be implanted by
ion bombardment into specific sites
on the silicon wafer. Because the ion
scatters as it slows down in the sili-
con, we will not know the exact loca-
tion of the donors, only that they will
lie within close range of the defined
implantation area. The top-down
approach provides a rapid means to
demonstrate proof of principle and
allows us to fabricate a two-donor
device that can be used to test readout
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(a) If the magnetic tip is kept at a fixed distance d from the
sample, then lowering the value of the magnetic field corre-
sponds to sweeping the sensitive slice upwards, toward the
surface. At some point, the slice leaves the sample, and the
resonance condition changes dramatically. That change is
seen in the derivative of the MRFM signal as a dip, indicated 

by the arrows. (b) By following the dip as a function of tip
height, we can measure the tip’s magnetic field. From the field
gradient, we then calculate the width of the sensitive slice
using Equation (7) in the text. Knowing the spin density within
the sample, we use the slice width to deduce how many spins
produced the signal and thereby infer the MRFM sensitivity.

Figure 7. Sensitivity of the MRFM



strategies and, possibly, quantum
operations. Scaling this approach to
large numbers of qubits will be 
challenging, because of the irregular
spacing of the donor array. 

In contrast, the bottom-up
approach will use a scanning tunnel-
ing microscope (STM) with which to
place phosphorous atoms on a clean
silicon surface in a precisely arranged
array. The array will then be over-
grown with silicon, and the gate struc-
tures will be laid down by electron
beam lithography (EBL). This
approach, although more difficult to
implement, could in principle allow us
to build a Kane-type computer with
the required precision. The bottom-up
approach is not discussed here but is
described in detail in the article
“Fabricating a Qubit Array with a
Scanning Tunneling Microscope”
on page 302. 

Top-Down Approach for
Creating a Two-Donor Device. A
host of issues surrounds the operation
and readout of the nuclear-spin quan-
tum computer. A key concern involves
the transfer of the electron from the
target to the readout atom during read-
out. The two electrons in the D– state
are not bound very strongly to the
phosphorous atom, and the electron
may be lost during the transfer. The
initial phosphorus-phosphorus (P-P)
system would transform into a
P-P+ system. If that is the case, we
may need to use extra electrodes in
order to create a deeper potential that
will confine the electron or to employ
a different readout atom (such as tel-
lurium) that has a more strongly
bound two-electron state. 

Our current goal for the top-down
approach is to produce a device that
can be used to study the controlled
electron transfer between two donors.
We intend to ionize one of the two
phosphorus atoms and then study the
coherent transfer of the remaining
electron between the two donor atoms

in the P-P+ system. For this purpose,
we have relaxed the stringent con-
straints of the Kane computer archi-
tecture and designed the simple device
shown in Figure 8. It consists of two
A-gates separated by a single J-gate.
Two phosphorous atoms will be

implanted between the A- and J-gates,
an arrangement that is sufficient for
charge transfer experiments. 

Device fabrication starts with a
wafer that is already topped with a
barrier layer of SiO2. To deposit
metal A- and J-gates on the surface
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Figure 8. Fabrication of a Two-Donor Device
(a) For proof-of-principle experiments involving the transfer of an electron between
two phosphorus donors, it is not necessary to configure A-gates above the donors.
Instead, we are configuring the three-gate device shown in side view in this illustra-
tion. (b) The top view schematic shows that the donors will be implanted between
the A- and J-gates (red circles). The single horizontal line at the top of the gates rep-
resents an opening in a polymer resist layer. Ions can enter the substrate only
where the line crosses the gates. The schematic also shows representative SET
devices located near the implantation sites. (c) AFM image of an actual device prior
to implantation. The narrow horizontal line near the end of the gates is a 20-nm-wide
opening in the resist. (d) An SEM image of a fabricated metal-gate array is shown.
The large metal structures on either side of the gates are aluminum electrodes used
to detect the impact of ions during implantation. (e) This magnified view shows the
central A-, J-, and A-gates. We have fabricated gate arrays with J-gate widths of less
than 15 nm and gate separations down to 30 nm. The image in (f) shows a J-gate
made from a titanium/gold alloy that is only 12 nm wide.

(a) Two-Donor Test Device

1 µm

12 nm

J A

(d) Fabricated Test Device

(b) Top View Schematic

(c) Two-Donor Test Device

(e) Magnified View

Site 1 Site 2

(f ) J-Gate



before ion implantation, we use EBL
techniques. A new layer of resist is
created that covers the entire surface,
including the gates. A second EBL
exposure then patterns a thin line
across the gates. This pattern is
developed so that two tiny channels,
each approximately 15 × 30 nanome-
ters, are created on each side of the
J-gate. The channels extend down to
clean SiO2 and define the implanta-
tion sites. 

Next, we bombard the wafer with
phosphorous ions. Although most of
the ions are stopped in the mask,
some go through the channels, strike
the wafer, and get implanted about
10 nanometers below the Si/SiO2
interface. After implantation, the
device is heated to between 900°C
and 950°C to anneal any damage to
the silicon lattice. As a final step, we
lay down the SETs. Creating the SETs

after the anneal (instead of making
them in the same step as the control
gates) protects their fragile tunnel bar-
riers, which would likely be degraded
should they be submitted to tempera-
tures above 900°C. 

Because we want only one phos-
phorus atom per implantation site, the
key to this entire process is the ability
to detect a single ion after it has
struck the silicon. And it is the proper-
ties of the silicon itself that help us
fulfill this task. The energetic phos-
phorous ion produces a cascade of
electron-hole pairs as it slows down
and comes to a stop in the silicon
matrix. Those charge species can be
separated by an applied electric field,
accelerated, and detected as a current
pulse in an external circuit (see
Figure 9). Voltage applied to surface
electrodes straddling the implantation
sites produces the field and transmits

the pulses. The intrinsic silicon 
substrate makes this in situ particle-
detection system highly efficient
because the accelerating electric 
field extends fully between the two
electrodes. We have demonstrated
detection efficiencies of over 99 per-
cent. Unfortunately, we cannot tell
where the ion falls, and as there are
two holes, there is only a 50 percent
chance of creating a two-donor device
with one donor in each hole. Although
there are ways to improve those odds
(by masking all but one hole with a
specialized AFM cantilever, for exam-
ple), in the short term, a 50 percent
success rate is acceptable. 

So far, no one has come close to
seeing the transfer of a single electron
between two precisely located,
nanofabricated donor atoms. We hope
to do so with a device similar to the
one described above by September or
October of 2002. We would then be in
a position to study the coherent trans-
fer of the electron between two donor
atoms and possibly obtain information
on decoherence mechanisms of rele-
vance to spin readout. 

Unlike the simple test device
shown in Figure 8, an ideally config-
ured device would have the A-gates
directly above the phosphorous
donors. We have designed a process 
to fabricate such a device (McKinnon
et al. 2001). A multilayer electron-
beam-sensitive resist is deposited on
top of a SiO2-coated silicon wafer,
the resist is partially developed, and a
linear array of ion-implantation chan-
nels is patterned in the resist with EBL
techniques. The wafer is bombarded
with phosphorous ions. The resist is
then fully developed, and triple-angle
metal evaporation is used to deposit
the metal gate array and the SETs on
the SiO2 surface. Because only one
mask is used to define the location of
both the ion implantation sites and the
gates, the A-gates are automatically
registered over the qubits. 

Figure 10 shows a six-donor test
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Figure 9. Detection of a Single-Ion Impact
We can detect in situ the impact of a single phosphorous ion in the silicon wafer.
Aluminum electrodes are deposited on either side of the implantation site. An elec-
tric field applied between the two electrodes is used to separate electron-hole pairs
that are created by ion impact. Each type of charge carrier migrates to its respective
electrode and produces a current pulse that is detected by an external circuit.
The implantation is halted after two such pulses have been detected.



device made by triple-angle evapora-
tion. No ions were implanted into this
device, and as can be seen in the fig-
ure, the triple-angle process does not
yet result in gates that are sufficiently
narrow to allow implementing the
Kane scheme. We also have to address
the problem of maintaining the
integrity of the SET through the high-
temperature anneal. However, the 
fundamental idea is robust. 

The precision of the donor arrays
produced by the top-down approach
will be limited by straggling, which is
inherent to ion implantation, and by
the diffusion of dopants during the
annealing step. Recent calculations
indicate that small irregularities in the
ion array could impair the operation

of the quantum computer. That is why
we are also pursuing the bottom-up
fabrication approach, which might
lead to a device with a very regular,
well-characterized donor array. 

Concluding Remarks

Phosphorous in silicon is a very
clean, well-understood solid-state sys-
tem. In its turn, NMR is a very well
understood nuclear-spin manipulation
technique. Performing NMR on a sili-
con chip implanted with phosphorus
can therefore make for a very power-
ful quantum computer. 

But the creation of a silicon-based
solid-state computer presents such an

enormous technical challenge that we
must explore several strategies for
building and implementing almost
every aspect of the device. Hence, we
investigate both SETs and magnetic
resonance force microscopy as a
means to read out the qubit state.
Similarly, we have pursued two com-
plementary fabrication strategies: the
top-down process, which uses indus-
trial production techniques, such as
ion implantation and EBL, to produce
a few-qubit device, and the bottom-up
process, which involves advanced
STM techniques and conventional
molecular-beam epitaxy. Although the
bottom-up approach is less suited to
high-throughput production, it has 
the potential of leading to large, high-
ly regular qubit arrays. We have made
significant progress along all these
parallel development paths. 

Currently, scaling up a solid-state
computer to over a million qubits is a
goal that appears so distant as to be
nearly out of sight. Yet less than fifty
years ago, computer companies
attempting to reduce the size of their
machines were just becoming aware
of a new strategy known as integrated
circuits. Those early chips were crude
and contained but a few transistors,
but from them, evolved the modern,
densely packed integrated circuits of
today. Like those early chips, the
quantum devices developed so far are
rudimentary. No doubt, the challenges
we face in building a real silicon-
based quantum computer are signifi-
cant, but our initial results offer hope
that large-scale quantum computing
may one day be realized. 
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Figure 10. Creating a Multidonor Device
We have developed a process for creating gates directly over implanted ions.
(a) In separate steps, patterns 1 and 2 of this EBL mask are partially developed in a
trilayer resist that coats the substrate. The resist then sustains a series of lines with
tiny channels that extend down to the substrate, where patterns 1 and 2 intersect.
(b) A cross section of the resist after partial development shows the channels.
The wafer is now bombarded with phosphorus ions. Some ions make it to the sili-
con surface and are implanted 5–10 nm below the Si/SiO2 interface. (c) The resist is
fully developed and material is removed, leaving behind a large cavity between the
SiO2 surface and the self-supporting top layer. Triple-angle shadow evaporation is
then used to lay down an array of metal gates on the SiO2 surface. (d) This photo
shows a potential six-donor device with two readout SETs. No ions were implanted
into this device. (e) A schematic side view of the device reveals the metalization 
pattern that results from the triple-angle shadow evaporation process.
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The Australian Centre for
Quantum Computer Technology
and Los Alamos National

Laboratory are working together to
answer the question, “Can the solid-
state quantum computer (SSQC) pro-
posed by Bruce Kane (1998) be built?”
Illustrated in Figure 1, the architecture
put forward by Kane requires a linear
array of phosphorus atoms (nuclear
spin 1/2) inside an isotopically pure 
silicon-28 (spin 0) wafer. The spacing
between the atoms needs to be about
20 nanometers, and the array will be
located 5 to 20 nanometers beneath the 
silicon surface. An array of metal elec-
trodes, isolated from the silicon by a
thin insulating layer of silicon dioxide
(SiO2), will sit above the qubit array
and needs to be precisely registered 
to it. Because the array is so small 
and because the silicon overlayer must 
be nearly free of impurities and crys-
talline defects for the computer to
operate properly, we must achieve
unprecedented control of the 
fabrication process. 

Our efforts to build the SSQC
focus on a novel “bottom-up” fabrica-
tion approach. Starting with a clean
silicon surface, we will build each
layer of the device in succession, first
creating the phosphorus array and
embedding it in the surface, then
growing the silicon overlayer, the
SiO2 insulating layer, and finally 
laying down the metal electrodes. 
(We are also pursuing a “top-down”
fabrication approach, which along
with information about the operating
principles of the computer, is
described in the article “Toward a
Silicon-Based Nuclear-Spin Quantum
Computer” on page 284.)

The scanning tunneling microscope
(STM) plays a central role in the 
bottom-up approach, serving as both a
fabrication and electrical characteriza-

tion tool. To create the phosphorus
array, we employ STM-based hydro-
gen lithography, developed by Joseph
Lyding’s group at the University of
Illinois at Urbana-Champaign (Lyding
et al. 1994). Immediately following
the array fabrication step, the silicon
overlayer will be grown by molecular
beam epitaxy to encapsulate the array.
Our STMs have variable temperature
control so that we can anneal the
overlayer in situ, and thus be in a
position to study the stability of the
phosphorus array during silicon over-
growth. We can also identify potential
defects and impurities that could
impair computer operation. Once the
thin SiO2 layer is grown, we will 
create the metal-gate array using
state-of-the-art electron beam 
lithography (EBL) technology. 

In this article, we summarize our
progress in building the phosphorus
array, overgrowing the silicon layer,
and checking whether the latter step
alters the array. To convey the central
role of the STM in building the SSQC,
we start by presenting the principles
that make it such a powerful fabrica-
tion and characterization tool. 

Scanning Tunneling
Microscopy

The STM probes the surface of a
sample by inducing electrons to tunnel
between the surface and the tip. As
illustrated in Figure 2, an extremely
sharp metallic tip (with radius of 
curvature R that is typically about 
10 nanometers) is brought to within a
few angstroms of a sample’s surface.
The thin vacuum region separating 
the tip and the sample forms a poten-
tial barrier, and a bias voltage between
the tip and the sample causes more
electrons to tunnel through the barrier

from occupied energy states to unoc-
cupied ones. To a first approximation,
the tunneling current at a point on the
surface is proportional to the local
electron density of states (LDOS) in
the sample. By measuring the tunnel-
ing current as a function of position,
we can obtain an extremely localized
map of the electronic structure of 
the sample’s surface. 

The tip is attached to a piezoelec-
tric scanning device, which moves it
over the surface of the sample in a
raster pattern. An image of the surface
is thus obtained. In practice, we use a
feedback loop to adjust the tip height
and keep the tunneling current con-
stant as the tip moves. (Scanning in
this “constant-current” mode prevents
the tip from crashing into protrusions,
such as surface steps.) The resulting
map of tip heights versus position can
be used to construct an image of the
surface that shows contours of con-
stant LDOS. On many surfaces, this

Figure 1. Kane’s Architecture for
a Quantum Computer
In Kane’s concept of a silicon-based
quantum computer, the qubits are phos-
phorus atoms embedded in an isotopi-
cally pure 28Si crystal at a distance of
about 20 nm from each other. Above 
the silicon, there is an insulating barrier
of SiO2, and above that barrier,
metallic gate electrodes. The A-gates
help manipulate the individual 
qubits whereas the J-gates control the
interaction between neighboring qubits.

A J A

SiO2 barrier

Silicon substrate

~ 20 nm

Phosphorus
atom



contour map is equivalent to a map of
the atomic positions. 

The electronic-energy diagrams 
of the tunneling process, shown in
Figure 3, help to explain the tech-
nique’s atomic resolution, as well 
as the subtleties of the information
obtained. The applied bias voltage
defines the energy offset, or energy
“window,” between the Fermi levels
of the tip and the sample. Any 
electrons that have energies within
that window contribute to the net
tunneling current. 

In 1985, shortly after the develop-
ment of the STM, Jerry Tersoff and
Donald Hamann described the tunnel-
ing mathematically, by applying
Bardeen’s tunneling theory (1961) to
the tip-sample system. By assuming a

low temperature, a small bias voltage
V, and a featureless tip (one in which
the electron density of states is con-
stant), they showed that the tunneling
current could be written as

(1)

Here, Ψν are the sample’s wave func-
tions whose energy eV above the Fermi
level EF is evaluated at the point r0 on
the tip—see Figure 2(a). The sum over
the probability densities from all such
wave functions is the LDOS of the
sample directly below the tip, so that in
the approximation of Equation (1), the
tunneling current is indeed proportional
to the sample’s LDOS. 

The spatial resolution of an STM
image is extremely high (approxi-

mately 0.01 angstrom) in the direction
perpendicular to the surface. That is
so because the tunneling probability T
decreases exponentially with the sepa-
ration s between the tip and the sam-
ple. The Wentzel-Kramers-Brillouin
(WKB) approximation for the tunnel-
ing probability through the type of
potential barrier shown in Figure 3 
(a trapezoidal barrier between planar
metal electrodes) yields 

(2)

where κ, the inverse decay constant in
the potential barrier, is given by
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(a) This schematic diagram illustrates the steps in the oper-
ation of an STM. An extremely sharp tip is held within a few
tenths of a nanometer of a sample surface. A bias voltage V
applied between the tip and the sample causes electrons to
tunnel between the two. The tunneling current is monitored
with a feedback loop, which keeps the current constant by
varying the gap width s between the tip and the sample. The
gap width is then proportional to the sample’s local density 

of states (LDOS). The tip moves in a raster pattern laterally
over the surface. A plot of the tunneling current versus 
position is a map of the sample’s LDOS. One such map is
shown in (b). In many cases it is equivalent to a map of
atomic positions. (c) These optical micrographs show two
STM tips: One is made of tungsten (left) and the other, of
etched 90% Pt–10% Ir alloy. Each tip has a radius of curva-
ture of about 10 nm.

Figure 2. The Scanning Tunneling Microscope (STM)



In Equation (3), me is the free-
electron mass in vacuum, and h is the
reduced Planck constant. The variables
are the work functions1 of the tip and
the sample, φt and φs, respectively, the
electron kinetic energy normal to 
the barrier E (measured relative to 
the tip’s Fermi level), and the bias
voltage V applied to the sample. 

Given nominal values for the
parameters in Equation (3) (for exam-
ple, φt ≈ φs = 3–6 electron volts,
E ≈ 0.025 electron volts, and 
V = 1–2 volts), the decay constant κ
is of the order of 0.1 nanometer–1. 
A change of 0.1 nanometer in the
spacing between the tip and the sam-
ple alters the tunneling probability by

e2 = 7.4. Thus, a topographic resolu-
tion of the order of 0.001 nanometer 
in the direction perpendicular to the
surface requires only a 2 percent preci-
sion in the measurement of the tunnel-
ing current. With carefully designed,
low-noise electronics, that precision is
easily achieved—even for a tunneling
current of 100 picoamperes. 

The resolution parallel to the sur-
face is also atomic—on the order of
0.1 nanometer—for much the same
reason: The extreme sensitivity of 
the tunneling current to the gap width
ensures that essentially the entire 
tunneling current arises from a single
atom or a small cluster of atoms at 
the very end of the tip (those atom(s)
closest to the sample). On a clean,
well-formed tip with a small radius of
curvature, atoms or clusters that are
laterally displaced from the end are

also farther from the sample and do
not contribute a significant number 
of electrons to the tunneling current.
Thus, there is very little lateral spread
associated with the signal. 

A more-detailed look at the origin
of the tunneling current will shed
additional light on the information
contained in the STM image.
Equation (1) can be rewritten to
account for both a finite energy 
window for tunneling and a more-
complex electronic structure of the tip
as follows (Selloni 1985):

where ρt and ρs are the tip and sample
LDOS, respectively, T is the tunneling
probability between the tip and the

It
eV

∝
−
∫  
0

t(E)    s(E+eV)  T(E,eV) dE ,ρ ρ
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This schematic electronic-energy level diagram helps illustrate
basic STM concepts. Filled electronic states are below the
Fermi level EF whereas empty states are above. A potential
barrier is created by the vacuum gap between the tip and sam-
ple. If the width of the barrier is so narrow that the electron
wave functions of the tip and sample overlap, then electrons
can tunnel to empty states in either the tip or the sample.
(a) When the two Fermi levels are equal (because the tip and
sample are connected to a common ground) there is no net
current flow. (b) When a bias voltage is applied, the Fermi 
levels of the two materials become unequal, and the difference 

defines an energy window (red box). In the case shown,
the bias voltage raises the Fermi level in the metal tip relative
to that in the metal sample. Electrons in filled states within 
the energy window can tunnel from the tip, through the poten-
tial barrier, into the sample’s empty states. The arrows of
decreasing size indicate that the tunneling probability is high-
est for electrons at the Fermi level of the tip and decreases as
the electron energy decreases. (c) No states are available in
the energy gap between filled states and the conduction band
of a semiconductor sample. Electrons can only tunnel into
empty states in the conduction band.

1 The work function φ is the energy needed
to remove an electron, whose energy is at
the Fermi level, from the sample.
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sample, and the dependence of the
tunneling current on r0 has been 
suppressed for simplicity. 

The expression in Equation (4)
emphasizes that the properties of both
the tip and the sample contribute to
the tunneling current. Therefore, one
needs to have substantial background
information about both in order to
interpret an STM image. For example,

numerous geometric and electronic
effects go into the LDOS function ρs,
including the electronic structure at
the surface, the band structure of the
material, the presence of dangling
bonds at the surface or bulk reso-
nances, the number and orientation of
back bonds, and so forth. In addition,
we need information about the elec-
tronic structure of any adatoms or

contaminants (such as oxygen,
carbon, carbon dioxide, nitrogen, and
others) that might be present. Through
ρt, the appearance of an image is also
closely related to the electronic struc-
ture of the tip. Finally, of particular
importance is the fact that the electron
density is not always centered about
the cores of the atoms in the material.
Several of these considerations arise
in our work on the SSQC and will be
discussed later. 

One powerful technique that can be
used to help us interpret images is to
change the direction (sign) of the bias
voltage. By doing so, we cause the
tunneling current to reverse its direc-
tion. If the tip is biased to have a 
higher Fermi level, then current flows
from the tip to the empty states in the
sample. If the bias is reversed, so that
the sample has a higher Fermi level,
then the electrons from the sample’s
filled states flow into the empty states
in the tip. We therefore have a means
to obtain information about the density
of both the empty and filled states of
the sample. The differences between
the two STM images help us sort out
electronic effects from structural 
information and to distinguish among
features that appear identical when
only one bias direction is used.

Despite the intricacies involved, we
can interpret an STM image quite
accurately when all the available
information is taken into account.
That is why STM imaging is continu-
ing to produce significant results in
surface science. 

Preparing Silicon(100)
Surfaces 

The bottom-up fabrication
approach begins by preparing a flat
(100)-oriented silicon surface.
Technologically, this is one of the
most important semiconductor sur-
faces. For our purposes, it is relatively
easy to prepare, can be patterned by
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Figure 4. The Si(100)-(2 × 1) Surface
(a) Schematic view of a row of atoms in a bulk-terminated Si(100) surface. This 
configuration is energetically unfavorable because every atom has two singly 
occupied dangling bonds. (b) The bulk-terminated surface can reconstruct into 
the so-called Si(100)-(2 × 1) surface. The dangling bonds of neighboring atoms join 
to form σ-bonded dimers, and the remaining protruding bonds become weakly
π-bonded. (c) This view of the reconstructed surface shows several rows of dimers.
In the third row from the left, the dimers are pinned in the buckled configuration
(see text). (d) A filled-state image of a Si(100)-(2 × 1) surface (10 nm × 5 nm) show-
ing several monolayers. The bright lines making up each “terrace” are the dimer
rows, which rotate by 90° with each successive layer. The defect density of an aver-
age sample is approximately 5%. The wavy line along the upper edge of the central
terrace is due to buckled dimers.

(a) (b)

(c)

(d)



STM-based hydrogen lithography, and
is well suited for the subsequent over-
growth of crystalline silicon layers.
Although the (100) surface has been
studied by STM and other methods
for over 15 years, we are uncovering
new details important to constructing
the type of atomic-scale electronic
structures needed in the Kane solid-
state quantum computer and other
quantum devices. 

Figures 4(a) and 4(b) show how the
bulk-terminated (100) surface, every
atom of which has two dangling
bonds, reconstructs in a manner that
lowers the surface energy. Electrons
from two neighboring silicon atoms
form a σ-bond, so the resulting sili-
con-silicon dimer has only two dan-
gling bonds. These bonds form a
weak π-bond to further reduce the
surface energy. The π-bond can easily
be broken by chemically active
species, such as hydrogen, which
adsorb on the surface. 

The reconstructed surface, com-
monly referred to as the Si(100)-
(2 × 1) surface (a designation that
derives from the corresponding elec-
tron-diffraction pattern), takes on the
appearance of a neatly plowed field,
with rows of dimers aligned parallel
to each other, as seen in Figures 4(c)
and 4(d). In filled-state STM images
taken at room temperature, most of
the dimers appear as symmetric bean
shapes. In reality, the dimers are tilt-
ed, or buckled, and are flipping back
and forth between buckled configura-
tions very rapidly—refer to Figure
4(c). The oscillation takes place too
quickly to be imaged with an STM.
Therefore, in general, an average con-
figuration is observed. Near defects or
step edges, however, the dimer can be
pinned in an asymmetric position and
imaged. Such an image can be seen at
several locations in Figure 4(d), where
neighboring dimers are seen to buckle
in alternate directions. 

Surface preparation begins with
degassing the sample and its holder

by holding them at an elevated tem-
perature for several hours. (Because
the surface is reactive, this step and
those that follow are carried out in
ultrahigh vacuum.) The sample is
flash-heated to a temperature of
1250°C and cooled under conditions
that allow the surface silicon atoms to
form a well-ordered Si(100)-(2 × 1)
surface. But the difficulty in precisely
controlling the annealing process and
the inability to cut the starting sub-
strate exactly on axis result in a sur-
face typically consisting of several
terraces of simple atomic planes. On
a given terrace, all the dimer rows run
in the same direction, whereas the
in-plane orientation of the dimer rows
rotates by 90° from one terrace to the
next. The terrace edges terminate

smoothly or roughly, depending on
whether the dimer rows for that ter-
race run parallel or perpendicular to
the terrace edges, respectively. 

Even a freshly prepared 
Si(100)-(2 × 1) surface will contain
defects. The main types observed in
STM images, illustrated in Figure 5,
are type A defects, in which a single
silicon dimer is missing, type B, in
which two adjacent dimers in a row
are missing, and type C, whose make-
up is still controversial. Type C defects
could be the result of a subsurface
vacancy, or else consist of two missing
silicon atoms from adjacent dimers in
a row. They could also be due to an
adsorbed impurity, for example an
absorbed water molecule (Chander et
al. 1993). Although it is nearly impos-
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(a) Si(100) 2 × 1 Surface 
     

Dimer

(b) Type A Defect (one dimer missing)

(c) Type B Defect (two dimers missing)

Si atom

Unit cell 0.768 nm x 0.384 nm

(d) Type C Defect (controversial) 

Figure 5. Defects in the Si(100)-(2 × 1) Surface
(a) This cartoon of the Si(100)-(2 × 1) surface illustrates type A, B, and C defects.
(The structure of a type C defect is controversial. See text for a further discussion.)
The 0.768 nm × 0.384 nm unit cell (the values are for the dimer spacings along the
rows and between the rows, respectively) is also shown. (b), (c), and (d) show filled-
state images of type A, B, and C defects, respectively.



sible to eliminate these defects during
preparation, we can prepare surfaces
with defect densities of less than a
few percent by following careful 
vacuum practices in the STM chamber.
The effect of defects on the operation
of a quantum computer will be further
discussed under the section “Qubits,
Defects, and Dopants.”

STM-Based Hydrogen
Lithography

Once we have prepared a clean sur-
face with a low defect density, we are
ready to begin the array fabrication
scheme. We use a resist technology
analogous to the lithographic tech-
niques used in conventional electronics
manufacturing, the main difference

being that the STM-based technology
allows us to create features on the
atomic scale.2 The idea is illustrated 
in Figure 6. 

The first step is to deposit a single
layer of hydrogen atoms (the “resist”)
on the clean surface. In order to do so,
we dissociate molecular hydrogen gas
by passing it over a hot filament as it
enters the STM vacuum chamber. The
resulting hydrogen atoms are directed
onto the heated sample surface, where
they break the weak π-bond and adsorb

to the surface by attaching to the very
reactive dangling bonds. Provided the
conditions are right, one hydrogen
atom can covalently bond to each sili-
con atom, and the surface becomes
coated with a uniform monohydride
layer (see Figure 7). 

The STM tip is then used as the lith-
ographic patterning tool. Controlled-
voltage pulses applied between the tip
and the sample cause very small patch-
es of the monohydride layer to vibrate
and heat up and/or to become electroni-
cally excited. Individual hydrogen
atoms are liberated, and as a result, the
dangling bond of the underlying silicon
atom becomes exposed. The tiny, atom-
sized holes created by the STM are the
only reactive sites on the otherwise
unreactive monohydride layer.
Interestingly, the holes created in the
hydrogen layer appear as protrusions
above the hydrogen-terminated surface.
This is an example of electronic effects
influencing the STM images. Whereas
the hydrogen-terminated structures pro-
trude farther into the vacuum than the
dangling bonds, the energy of the dan-
gling bonds is closer to the window
between the Fermi levels of the tip and
the sample. The dangling bonds, there-
fore, contribute more strongly to the
tunneling current and appear “taller.”

Next, we introduce high-purity
phosphine (PH3) gas directly into 
the ultrahigh-vacuum chamber of the
microscope. The PH3 is very reactive
and adheres to the exposed dangling
bond with a sticking coefficient of one.
As seen in Figure 8, we can place sin-
gle phosphorus-bearing molecules
where necessary and thereby build 
an atomic-scale phosphorus array. 
The reacted sites appear taller than
both the hydrogen-terminated sites and
the unreacted dangling bonds. This
effect is likely due to a combination of
electronic and physical effects. 

The next step is to stimulate the
phosphorus atoms within the phosphine
molecule (which is attached to the 
silicon atoms by a single bond) to
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(a)  Monohydride Deposition (b)  Hydrogen Desorption

(d)  Heterodimer Formation (f)  Silicon Overgrowth

(c)  PH3 Dosing

(e)  Hydrogen Desorption

Figure 6. The Bottom-up Approach for Fabricating an Array of
Phosphorus Qubits 
(a) After preparing and cleaning a silicon surface, we dose it with hydrogen, which
adsorbs as a monoatomic layer. (b) The STM tip selectively desorbs individual
hydrogen atoms and exposes silicon at a set of regularly spaced sites that will
define the qubit array. (c) PH3 is introduced into the vacuum chamber. It bonds to
the silicon only at the exposed sites. (d) A critical anneal is performed to incorpo-
rate the phosphorus atoms into the silicon surface, forming a P-Si heterodimer.
(e) The hydrogen monolayer can be removed by further annealing at a slightly high-
er temperature (this step may not be necessary). (e) With molecular-beam epitaxy,
the phosphorus array is buried under fresh layers of silicon.

2 Scanning tunneling microscopy can be
used directly to create atomically precise
structures of metal atoms on metal 
surfaces. We are forced to adopt a lithog-
raphy approach because the strong cova-
lent bonds on the silicon surface prevent
us from directly rearranging atoms using
the STM.



incorporate into the top layer of the 
silicon surface and form a phosphorus-
silicon heterodimer. In that structure,
the phosphorus atom takes the place of 
one of the silicon atoms in the dimer
and attaches to the remaining silicon
surface through three strong covalent
bonds. Formation of the heterodimer 
is a critical step because it secures the
phosphorus atom in its patterned loca-
tion and helps prevent its diffusion 
during subsequent processing steps. 

Before studying the mechanism 
for incorporation through the hydrogen
resist, we had to learn how to 
distinguish the postdosing phosphorus-
related species from other features on
the silicon surface because, to date,
very few reports exist on the STM
imaging of single phosphine molecules
on silicon. We, therefore, conducted a
series of experiments in which the
clean Si(100)-(2 × 1) surface was sub-
jected to various dosing conditions.
Each time, the presence of phosphorus
on the surfaces was confirmed by
Auger electron spectroscopy. By exam-
ining both filled- and empty-state STM
images, we found it was possible to
distinguish between phosphine-related
surface species and surface defects. 

We then faced the challenge of
phosphorus incorporation. It is well
known that, at room temperature,
phosphine adsorbs onto a clean
Si(100)-(2 × 1) surface  and quickly 
dissociates to form PH2 and H.
Subsequent heating of the surface 
to about 400ºC leads to the complete 
dissociation of PHx (x = 2–3). We have
demonstrated that, at these tempera-
tures, the individual phosphorus atoms
also incorporate into the surface and
form the phosphorus-silicon het-
erodimer (see Figure 9). The hydrogen
remains on the surface as a monohy-
dride. Continued heating of the surface
to higher temperatures will liberate 
the hydrogen. In this way, the surface 
is left clean, consisting of only 
silicon dimers and phosphorus-silicon
heterodimers. 
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Figure 7. Creating the Hydrogen Resist
(a) This filled-state STM image is of a clean Si(100)-(2 × 1) surface with a very low
defect density. (b) Shown here is a hydrogen-terminated Si(100)-(2 × 1) surface,
which is almost entirely monohydride; that is, one hydrogen atom is bonded to each
silicon atom. Several other structures are also apparent: dihydrides (two hydrogen
atoms have bonded to a single silicon atom) and a 3 × 1 structure (three hydrogen
atoms have bonded to one silicon atom).

Figure 8. Adsorption of Single Phosphine Molecules
(a) This STM image (right) shows three desorption sites in a monohydride layer,
and the graph (left) shows the line profile, taken along the indicated white line, of
the leftmost site. The bright protrusion at each of the desorption sites is the signa-
ture of the single silicon dangling bond after desorption of just one hydrogen atom.
(The sites appear brighter because their DOS are closer to the Fermi level, so they
contribute more to the tunneling current.) (b) The same sites after dosing the sur-
face with phosphine gas. The profile shows an increase of 0.05 nm in height 
(calibrated against an atomic step edge on the same surface), a reproducible
increase that is observed at all adsorption sites. Given the information we gathered
by scanning tunneling microscopy, our interpretation of the increase in height is
that phosphine has adsorbed to the exposed sites.

(a) Desorption of Single Hydrogen Atoms in Monohydride Layer

(b) Adsorption of Phosphine in Desorption Sites
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Molecular Beam Epitaxy 
of Silicon

Subsequent steps for the fabrica-
tion of the SSQC call for growing a
50- to 200-angstrom-thick layer of
crystalline silicon over the array of
phosphorus atoms, depositing an
insulating layer of SiO2, and aligning
gate electrodes to the now buried
phosphorus array. High-quality crys-
talline, or epitaxial, growth of silicon
on silicon is typically done at high
temperatures. 

However, it is known that at high
temperatures, phosphorus atoms
buried in silicon tend to diffuse
upwards and pop up to the surface.
Furthermore, we observed during our
incorporation studies that, at temper-
atures of 650ºC and above, the phos-
phorus becomes mobile. It breaks
from the heterodimer and begins to
migrate about the surface until it
meets another phosphorus atom. 
It then forms P2 (or possibly P4),
which desorbs from the surface.
Thus, the next significant question 
in the bottom-up approach is, “Can
crystalline silicon be grown on either
a clean or monohydrided surface at
temperatures low enough to prevent
the diffusion and segregation of 
phosphorus?”

Taking into account results from
the literature and our own experi-
ments, we have adopted two parallel
growth strategies. We begin both by
annealing the sample directly after
phosphine dosing, so that the phos-
phorus atoms become incorporated
into the silicon surface and the hydro-
gen resist can desorb. We then need
to encapsulate the phosphorus atoms
under a few monolayers of silicon. In
the first growth strategy, we will grow
the encapsulation layer at room tem-
perature. The resulting layer will have
a high surface roughness with numer-
ous silicon islands and require a sub-
sequent annealing step for surface
flattening. In the second strategy, we
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Figure 9. Incorporation of Phosphorus into the Surface
(a) This schematic diagram illustrates how phosphine molecules adsorb onto the
bare Si(100)-(2 × 1) surface. The filled-state STM image in (b) is of a pair of adsorbed
phosphine molecules, and (c) shows the line profile through the left molecule.
(d) After annealing the surface to 400°C, the phosphorus atom incorporates into
the silicon surface and forms a Si-P heterodimer. (e)–(f) These figures show the
filled-state STM image of the heterodimer and the corresponding line profile. A
comparison between (c) and (f) shows that there is a characteristic height differ-
ence between the nonincorporated and incorporated phosphorus, the former
extending higher above the surface plane.

Figure 10. Images of Different Silicon Coverages
These images (100 nm × 85 nm) of a Si(100)-(2 × 1) surface show different stages of
epitaxial silicon growth. The silicon was deposited while the sample remained in the
microscope and was held at about 250°C. (a) The sample is shown after a 0.08
monolayer was grown. Epitaxial growth is demonstrated by the elongated shape of
the islands and their direction being perpendicular to the underlying dimer rows.
(b)–(c) The sample is shown after a deposition of 0.5 monolayer and a complete
monolayer, respectively. At the growth temperature noted above, the surface is
rough. Defects and silicon vacancies dominate the topography.
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will try to grow the silicon at an ele-
vated temperature. Because the layers
will grow epitaxially, we can elimi-
nate the subsequent anneal, but the
challenge will be to find a growth
temperature that also minimizes the
segregation and diffusion of the 
phosphorus atoms. 

A significant number of experi-
ments need to be conducted to 
determine the optimal encapsulation
conditions. By integrating a small sili-
con evaporator into the STM chamber,
we have already begun to study 
the epitaxial deposition of thin silicon
layers at low temperatures. Figure 10
shows growth in the thickness of sili-
con of up to one monolayer at 250°C.
The new layer grows epitaxially.
Before it is annealed, the complete
monolayer still exhibits vacancies 
that are not filled during the silicon
overgrowth. Their possible detrimental
effects on the operation of the quantum
computer will have to be evaluated. 

We have also begun to explore the
first growth strategy (see Figure 11).
We incorporated phosphorus into the
silicon surface, deposited a few
monolayers of silicon at room tem-
perature, then annealed the sample
for 1 minute at 250°C. As seen in
Figure 11(b), this surface was fairly
coarse and not suitable for subsequent
epitaxial growth. A flat surface struc-
ture with island-free terraces was
observed only after the sample had
been annealed at 600ºC. Figure 11(c),
however, shows that, at those elevated
temperatures, the phosphorus atoms
have diffused to the surface. Although
that result is disappointing, we are
not discouraged. Ours are the first
such studies of phosphorus encapsu-
lation and silicon overgrowth. The
preliminary results simply demand
that we look for a new way to obtain
a flat surface at lower annealing tem-
peratures or an alternative way to
inhibit phosphorus diffusion.

We have, however, settled the ques-
tion of whether the incorporated phos-

phorus atoms are electrically active,
that is, whether their donor electrons
are free to conduct. We first grew a
thin layer of phosphorus on a silicon
substrate and buried it under a thick
silicon layer (grown at the relatively
low growth temperature of 250°C),
creating a so-called delta-doped layer.
According to the literature, our
growth and annealing conditions
resulted in a two-dimensional (2-D)
density of 1.7 × 1014 phosphorus
atoms per centimeter squared. If each

atom is electrically active, it would
contribute one free electron to the
substrate. When we measured the
electron density through the Hall
effect at a sample temperature of
4 kelvins, the result was a 2-D density
of 2.0 × 1014 electrons per centimeter
squared (see Figure 12). As the two
numbers agree within measurement
errors, it seems that all the phosphorus
atoms are electrically active
(Oberbeck et al. 2002). This result
suggests that the phosphorus atoms
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Figure 11. Silicon Overgrowth and Annealing after Low PH3 Dosing
(a) A Si(100)-(2 × 1) surface is shown after low PH3 dosing and annealing to incorpo-
rate phosphorus atoms into the Si-P heterodimers. The heterodimers are visible as
bright zigzag structures. The image size is 50 × 50 nm2. (b) The epitaxially over-
grown surface is shown after annealing at 250°C. The image size is also 50 × 50 nm2.
The surface is too coarse for the SSQC and must be annealed. (c) After annealing at
600°C, the surface is flat. The bright spots indicate, however, that phosphorus has
diffused to the surface. The image size is 55 × 55 nm2.

Figure 12. Electrical-Activity Tests
We wanted to check that phosphorus atoms incorporated in the silicon surface are
electrically active. (a) The longitudinal resistivity ρxx of the delta-doped sample as a
function of magnetic field was measured at 4 K. From this curve, a strong negative
magnetoresistance is clearly observed, and it indicates the two-dimensional (2-D)
nature of the delta-doped layer. (b) The Hall resistivity ρxy of the sample gives a 2-D
carrier density of 2.0 × 1014 cm–2. This number agrees with our dopant density and
indicates that each phosphorus dopant is electrically active. The inset is a schematic
of the phosphorus delta-doped silicon sample with metal surface contacts in the van
der Pauw arrangement.
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are incorporated in substitutional,
rather than interstitial, sites, which is
the ideal environment for the SSQC
qubits. 

Qubits, Defects, and Dopants

Although we have a clear strategy
for creating and burying the phospho-
rus array, the volume surrounding the
array in a working quantum computer
must also be free from crystal impuri-
ties and defects. In general, defects
disrupt the crystal structure and can
create new pathways for quantum
decoherence, which would inhibit
qubit operations. Charged defects can
be particularly disruptive. If the charge
arises from an unpaired electron, then
by necessity, there is an  “impurity”
spin that can interact with a qubit and
affect its quantum state. Furthermore,
the Coulomb potential of a charged
defect lying close to a qubit can inter-
fere with gate operations because it
can offset the voltage applied to the
qubit-controlling gate electrode. 

Fortunately, the STM allows us to
check the status of the buried qubits
and charged defects during the fabri-
cation of the quantum computer.
Scanning tunneling microscopy is
routinely used in characterizing the
charge of individual defects found on
the cleaved surfaces of compound
semiconductors (Zheng et al. 1994,
Lengel et al. 1994, Ebert et al. 1996).
The charge becomes visible because
of the so-called charge-induced band
bending, illustrated in Figure 13. The
states made available by band bending
attract charge carriers that screen, or
shield, the charged defect. Because
bending shifts electronic states into or
out of the window defining the source
of the tunneling current, it produces a
measurable enhancement or depres-
sion around the defect in the STM
images. The characteristic length 
scale of this screening effect is given
by the Debye screening length, which

depends on the semiconductor’s
intrinsic properties: its dopant type
and concentration (Dingle 1955). 

These techniques for imaging
charge have not been demonstrated on
silicon surfaces until now because it
has been generally assumed (based on
techniques such as photoelectron
spectroscopy that probe large surface
areas) that the Fermi level at the sur-
face of silicon is pinned. If that
assumption is true, the bands cannot
respond to charge near the surface.
But by taking into account what

occurs locally and by drawing on
other results obtained with the STM,
we have determined that pinning of
the Fermi level does not occur for
clean Si(100)-(2 × 1) surfaces, except
in the vicinity of type-C defects. This
has allowed us to image charged
defects on these clean surfaces for the
first time (Brown et al. 2002). 

Considering the band structure as it
is currently understood, we can quali-
tatively determine which types of
charge should be detectable in filled-
and empty-state imaging on a clean

312 Los Alamos Science Number 27  2002

Fabricating a Qubit Array

It

EF

EF

Sample

(b) Charge Present

+

Tip

Bias

It

EF

EF

Sample

(a) No Charge

Position

E
ne

rg
y

Tip

Bias

Figure 13. Band Bending
The electronic energy of an empty-state tunneling current is shown for a semicon-
ducting sample with no charge (left) and with positive charge (right). The effects of
surface states and defects have been neglected for illustration purposes. The
charge-induced band bending shifts more states into the window between the Fermi
levels of the tip and the sample. In this case, the increased state density relative to
the rest of the neutral surface creates a long-range enhancement centered on the
charge that falls off approximately like a screened Coulomb potential with a length
scale set by the Debye screening length.

Table I. Expected Effect of Local Charge on Surface LDOS

Silicon(100)-2 × 1 Surface Imaging Condition +Charge –Charge

Empty states Enhanced Depressedn-type
Filled states No effect Enhanced

Empty states Enhanced No effectp-type
Filled states Depressed Enhanced



silicon(100)-(2 × 1) surface for both 
p-and n-type materials.3 These predic-
tions, made under the assumptions of
nondegenerate doping, a tip work
function of 3 to 4 electron volts, and a
low C-defect density, are compiled in
Table I. As noted in the table, under
some conditions, we anticipate no
change in the appearance of an STM
image. That result is singularly differ-
ent from what is seen on compound
semiconductors and arises from sur-
face states derived from the π-bond.
These states, which are not present on
the compound semiconductor sur-
faces, limit the amount of band bend-
ing that can occur. 

Based on the expectations listed in
Table I, we performed STM experi-
ments at sample biases between
±1.5 volts on clean (2 × 1) surfaces of
Si(100) samples doped with phospho-
rus (approximately 8 × 1015 phos-
phorus atoms per cubic centimeter).
Low sample biases were used to
ensure that effects near the band edges
(for example, band bending) con-
tributed strongly to the tunneling cur-
rent. In these experiments, we were
able to image charged defects consis-
tent with our n-type predictions. 

One such charged defect is shown
in Figure 14. This defect is commonly
observed in studies of Si(100)-(2 × 1)
surfaces on thermally prepared sam-
ples and is typically referred to as a
split-off dimer (SD, also called the 
1+2 DV) defect. It consists of an A-
and a B-defect on the same row, sepa-
rated by one intact dimer. The empty-
state image of the SD defect shows a
long-range perturbation, but the filled-
state image shows no corresponding
feature even though the filled-state
imaging is closer to the valence band
edge on this n-type material. 

These results are consistent with
expectations based on Table I, indicat-

ing positive charge associated with the
SD defect. The enhanced density of
states—bright region in Figure 14(b)—
appears to be nearly radially 
symmetric and approximately centered
on the defect structure. Sections
through the data show that the 
signature is discernible out to about
4.5 nanometers from the center. 
The corresponding Debye screening
length, obtained from a screened
Coulomb potential function fit to the

sections, is approximately 3 nanome-
ters. That result was unexpected. 
The typical bulk value for the screen-
ing length that is consistent with our
dopant density (which correlates with
the number of charge carriers) is 
several tens of nanometers. The short
screening length indicates a high
dopant density at the surface. One
explanation is that, on our thermally
prepared surface, buried dopants 
may diffuse because of the high 
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Figure 14. Finding Charged Defects
(a) This filled-state image shows a charged split-off dimer (SD) defect on a 
Si(100)-(2 × 1) surface (center) and a type B defect (bottom center). (b) The same
defects are shown for an empty-state image. The bright “cloud” in the empty states
around the central defect indicates that there is an associated positive charge. The
other defects in the image appear neutral. These images measure 16.8 nm × 16.8 nm
and were acquired “simultaneously” by raster scans interleaved at each bias. The
asymmetric nature of the screening signature in the two biases is consistent with
our expectations. (c)–(d) Pictured here are filled- and empty-state images from a dif-
ferent sample, taken at lower resolution. Only about one-third of the defects are
charged. The images are 57 nm × 55 nm.

(a) Filled-State Image (b) Empty-State Image 

(c) Filled-State Image (low resolution) (d) Empty-State Image (low resolution)

SD defectSD defect SD defectSD defect

Type-B defectType-B defect Type-B defectType-B defect

3 Electrical conduction in n-type materials
is associated with electrons. In p-type
materials, it is associated with holes.



temperature, and the actual density at
the surface could be high enough to
account for the 3-nanometer screening
length. 

Another interesting result is that,
for samples with defect densities less
than 5 percent, only about one-third 
of the surface defects are charged.
This finding tells us that the charge 
is not associated with the simple
vacancy structure observed in the
images but must arise from more 
subtle effects. Charged defects may 
be due to, for example, rebonding 
differences among second-layer atoms.
Charged and neutral defects may also
coexist because of subsurface impuri-
ties or gas-phase species adsorbed 
in the vacancy structure itself. At this
point and by using only scanning 
tunneling microscopy, we are unable
to ascertain why only some defects 
are charged.

The fact that charge can be imaged
on a silicon surface tells us that, after
creating a flat overlayer, we will be
able to detect the subsurface charged
qubits. This finding is important for
determining whether the qubits move
during subsequent silicon growth. 
And looking beyond the Kane archi-
tecture, our results will be applicable
to any implementation of a solid-state,
silicon-based quantum computer. 

Future Challenges

To date, we have demonstrated
most of the individual steps required
to successfully fabricate the Kane
SSQC. We can create a small phos-
phorus array (O’Brien et al. 2001)
and incorporate that array into the sil-
icon surface. We have shown that the
phosphorus atoms remain electrically
active (oberbeck et al. 2002). We can
grow silicon epitaxially in the STM
at a temperature that should leave the
array intact, and we can detect
charged defects at the surface.
Although not reported in this article,

the Semiconductor Nanofabrication
Facility housed at the University of
New South Wales in Sydney,
Australia, has fabricated metallic
gates with dimensions close to those
required for proper operation of the
quantum computer. 

As we integrate the aforementioned
steps and try to produce a few-qubit
device, several questions remain to be
answered. Will the qubit array stay
intact during silicon overgrowth and
during any required postanneals? 
Can we remove defects during fabri-
cation and, if not, to what extent will
vacancies or impurities affect the
computer operation? Will we intro-
duce charge defects at the interface
between the silicon overlayer and 
the insulating layer? How well can we
register the gates with the qubits,
once the array has been built? 

Still, the number of questions that
confront us today is far smaller than
the number that faced us three years
ago, when we first contemplated the
steps involved in fabricating the
SSQC. At that time, each question
was tied to a long list of experimental
obstacles that needed to be overcome.
Through the combined efforts of two
laboratories in the United States and
Australia, we have been able to
develop experimental procedures that
have moved us closer to fabricating a
qubit array. Given our prior success,
we are hopeful that the remaining
issues can be addressed successfully
as well. 

On a different note, one exciting
idea that has emerged recently is the
possibility that STM can detect sin-
gle spins. Yshay Manassen et al.
(2000) reported detection of a spin-
induced alternating-current compo-
nent in the STM tunneling current.
Recent theoretical work, discussed in
the article “Theory of Single-Spin
Detection with a Scanning Tunneling
Microscope” on page 184, offers an
explanation and puts the experimen-
tal finding on firmer ground. At 

Los Alamos, we are in the process 
of modifying the electronics of our
STM and adding an external 
magnetic field with the hope of 
confirming the effect. If we are 
successful, directly studying spin-
spin interactions and creating,
manipulating, and reading out 
surface-bound qubits may become
reality. Such a possibility is 
indeed exciting. �
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